回归分析系列18— 平衡偏差与方差

 22 平衡偏差与方差

22.1 偏差-方差权衡简介

在模型构建中,我们通常面临偏差(bias)与方差(variance)之间的权衡。偏差是指模型的预测与真实值之间的系统性误差,而方差则是指模型在不同训练集上的波动性。

高偏差通常意味着模型过于简单,无法捕捉数据中的复杂模式(即欠拟合);高方差则意味着模型对训练数据过于敏感,导致在新数据上表现不佳(即过拟合)。

22.2 正则化与偏差-方差权衡

通过引入正则化项,可以有效控制模型的方差。例如,在线性回归中,我们可以使用岭回归(L2 正则化)或Lasso回归(L1 正则化)来平衡偏差和方差。

在Python中,scikit-learn提供了相关的正则化工具。

from sklearn.linear_model import Ridge, Lasso
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
import numpy as np

# 生成模拟数据
np.random.seed(42)
X = np.random.randn(100, 10)
y = np.dot(X, np.random.randn(10)) + np.random.randn(100)

# 划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)

# 岭回归(L2正则化)
ridge = Ridge(alpha=1.0)
ridge.fit(X_train, y_train)
y_pred_ridge = ridge.predict(X_test)
mse_ridge = mean_squared_error(y_test, y_pred_ridge)

# Lasso回归(L1正则化)
lasso = Lasso(alpha=0.1)
lasso.fit(X_train, y_train)
y_pred_lasso = lasso.predict(X_test)
mse_lasso = mean_squared_error(y_test, y_pred_lasso)

print(f'Ridge MSE: {mse_ridge:.3f}')
print(f'Lasso MSE: {mse_lasso:.3f}')

在这个示例中,我们使用了岭回归和Lasso回归来演示如何通过正则化来减少方差,同时保持适当的偏差。

22.3 偏差-方差分解

偏差-方差分解是理解模型预测误差来源的关键工具。总的期望误差可以被分解为偏差平方、方差和不可约误差三部分。

  • 偏差平方(Bias^2): 反映了模型预测的系统性误差。
  • 方差(Variance): 反映了模型在不同训练集上的波动性。
  • 不可约误差(Irreducible error): 由数据本身的噪声引起,无法通过模型改进来减少。
# 生成更多数据,演示偏差-方差分解
from sklearn.utils import resample

n_bootstraps = 100
ridge_preds = np.zeros((n_bootstraps, X_test.shape[0]))
lasso_preds = np.zeros((n_bootstraps, X_test.shape[0]))

# 使用不同的bootstrap样本计算偏差和方差
for i in range(n_bootstraps):
    X_train_res, y_train_res = resample(X_train, y_train, random_state=i)
    
    ridge.fit(X_train_res, y_train_res)
    ridge_preds[i, :] = ridge.predict(X_test)
    
    lasso.fit(X_train_res, y_train_res)
    lasso_preds[i, :] = lasso.predict(X_test)

# 计算偏差、方差
ridge_bias = np.mean((np.mean(ridge_preds, axis=0) - y_test) ** 2)
ridge_variance = np.mean(np.var(ridge_preds, axis=0))

lasso_bias = np.mean((np.mean(lasso_preds, axis=0) - y_test) ** 2)
lasso_variance = np.mean(np.var(lasso_preds, axis=0))

print(f'Ridge Bias^2: {ridge_bias:.3f}, Variance: {ridge_variance:.3f}')
print(f'Lasso Bias^2: {lasso_bias:.3f}, Variance: {lasso_variance:.3f}')

在这段代码中,我们使用bootstrap方法估计了模型的偏差平方和方差,从而更好地理解模型的误差来源。

22.4 偏差-方差权衡的实际应用

在实际应用中,选择模型时需要平衡偏差和方差。通常我们可以通过交叉验证来选择最佳的正则化强度,从而在降低方差的同时控制偏差。

 

  • 7
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值