L2-Net论文阅读

Main idea

这是把deep learning用于2D图像中进行patch match的research。
本文
这个CS Network是这篇文章,主要思想是把一个64 ∗ * 64的patch先downsample得到一个32 ∗ * 32的低分辨率的patch1,然后在原先64 ∗ * 64的patch的中心区域截取32 ∗ * 32得到patch2,这两个patch分辨率一个高一个低,相当于中心区域的信息twice,还包含了整体的信息。两个待比较的patch有四个小patch,用4个通道两两一组(组内param是share的)同时进行比较,不仅加快了计算速度还让比较更加有重点(中心区域)。metric function也是learned的。
在这里插入图片描述
本文改了主体网络,而且不用learned metric,直接concatenation然后用自己的loss function去train(metric是L2)

preprocessing

L2-Net CVPR2017
一种从patch中提取descriptor的网络结构,主要设计了一种data preprocess和loss function

data preprocess

随机选p个值,并选出这p个值的correspondence,组成p*p的矩阵。对角线对应positive,其他都是negative,这么做的原因可能是:真实情况下model面对的negative更多,model需要在众多的negative中找到一个positive,就需要有更强的negative的分辨能力,所以train中,positive:negative=1:1是有些不合理的,negative>>positive才能更接近真实情况。

loss function

1. Descriptor 的距离(相对距离)
match领域的文章喜欢用Hinge loss,但是Hinge loss在gradient的时候会不稳定,主要是由于threshold,你不知道每次迭代是哪些sample在起作用,所以有些文章用hard sample mining强迫所有sample都参与,但是hard sample mining有threshold,有些文章把hinge loss改成softplus。本文直接用相对距离,不用绝对距离这样就不会有threshold(括号里的2可以约掉)
在这里插入图片描述
在这里插入图片描述
2. 对feature的每一维去相关
因为overfitting与这个相关性成正相关,不加这一项会有严重的overfitting why???
在这里插入图片描述
在这里插入图片描述
3. Intermediate feature 距离
(就是在网络中把某层的feature抽出来进行restriction,这个也是后文中的DIF
从结果来看。。这个加不加都没太大区别,加了好一点点,但是加多了preformance会断崖式下降,因为约束太紧了
在这里插入图片描述
在这里插入图片描述

Result

这篇文章我最感兴趣还是为什么Batch norm是不learn的,result里给出了结果,,其实learn不learn。。都差不太多,不learn好一点点
在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值