L2-Net论文阅读

本文介绍了一种使用深度学习改进2D图像中patch匹配的方法。CSNetwork通过高低分辨率双patch对比,增强中心信息并提高计算效率。同时,L2-NetCVPR2017提出了一种新的网络结构,用于从patch中提取描述符,通过特定的数据预处理和损失函数设计,增强了模型对负样本的区分能力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Main idea

这是把deep learning用于2D图像中进行patch match的research。
本文
这个CS Network是这篇文章,主要思想是把一个64 ∗ * 64的patch先downsample得到一个32 ∗ *

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值