SDRSAC(CVPR2019)论文阅读

Main Idea

本文提出了一种不依靠descriptor计算出两个点云的相对Rt的方法。输入两片点云S,D,分别从两片点云S,D中随机抽取点数都为N的两片小点云P,Q。运用纯数学的方法估计出correspondences,算出Rt。然后用ICP去refine这个Rt。经过多次随机抽取生成多个Rt,借鉴RANSAC,利用inlier ratio计算出终止条件,最终得出能够使最多的点匹配的那个Rt(全局重投影误差最小)

可能问题

  1. 根据本文原理,这个方法虽然时间上复杂度不会太高,但是对于real data中,overlap率比较小的场景可能不会太好。
  2. 由于使用重投影误差衡量R,t好坏,对于有大量地板墙壁等平面的场景,很容易产生很多错误的correspondences。地板墙壁产生的R,t可能会被地板墙壁这种大量的弱特征“赞同”,而淹没像椅子桌子这种少量强特征提出的“异议”。不过这也是很多registration method 的问题,包括哪些learning的方案。

具体方法

输入两片点云P,QX \in {\left \{0, 1 \right \}}^{N\times N}记录它们的correspondences,X事先不知道。除了2N个3D坐标外没有任何其他信息。那么就先生成\frac{n(n-1)}{2}条线段,用这些线段描述点云结构。因为“点云中的线段经过Rt刚体变换之后长度依然不变”,取P中的一条线段(p_{a},p_{c}),Q中一条线段(q_{b},q_{d}),如果那么两条线段长度若相差很多,那么它们包含的4个点就肯定没有两对correspondences,最多一对。由于噪声,就算有两对匹配点构成的两条线段的长度也不会完全为0,那么我们就用计分机制,希望这个长度差越小越好,长度差越大,得分越低,长度差大于一定threshold就直接计0分。用A_{N^{2}\times N^{2}}作为记录score的矩阵。即:其中f

然后用最优化的思想,希望找到一个X \in{\left \{0, 1 \right \}}^{N\times N}使得这些correspondences得到的score越多越好。把 X展开成向量,

把上述问题等价转换为:

其中(7b),(7c),(7d),(5e)可以保证(5b),但是由于Y的rank1约束,这个问题是非凸的,我们把(7b)稍微放松一些,得到:

只要求Y半正定,不要求rank1,那么这样的话,\hat{X}就不能保证是二元的了,甚至Y_{ab,cd}\neq X_{ab}\ast X_{cd},但是希望Y和原来的解越接近越好,所以多加几个约束

 

约束(9)是保证同一个点不能和多个点匹配

约束(10)是保证线段不匹配的那么它们包含的4个点就肯定没有两对correspondences(要么ab不配,要么cd不配)

PS:这个线段是有向的,就是说,(p_{a},p_{c})(p_{c},p_{a})是分开算的。(p_{a},p_{c})(q_{b},q_{d})考察\left \{ p_{a},q_{b} \right \}\left \{ p_{c},q_{d} \right \}这两对是不是correspondences,而(p_{c},p_{a})(q_{d},q_{b})是考察\left \{ p_{c},q_{b} \right \}\left \{ p_{a},q_{d} \right \}。因为X中的每一个点都是YA中独立的一行。

(9),(10)这两个约束是线性的((9)也是线性?),所以原问题还是一个凸优化。最终的问题是:

整个问题求解后得到最优解\tilde{X},前面说了,用了semidefinite relaxation后,优化问题的解已经不能保证是0-1矩阵了,但是我们需要一个permutation matrix,也就是X \in {\left \{0, 1 \right \}}^{N\times N},所以再次构建一个优化问题(下图),找到与\tilde{X}最接近的X \in {\left \{0, 1 \right \}}^{N\times N},这里的\left \langle . , . \right \rangle是两个矩阵的inner product。一些简单的数学可以证明,该问题的最优解矩阵X^{\star}的每一行,就是把\tilde{X}的每一行最大值赋值1,其他为0,得到的0-1矩阵。然后以\tilde{X}中的值为score,选出最大的m个保留为1,其他1都置0。因为为节约时间,只保留m个correspondences,又希望最大化\left \langle X , \tilde{X}\right \rangle

整个算法流程如下:

上图中的T是终止准则,这里是模仿RANSAC的思想,假设inlier ratio是p_{I},经过Alg.2的第4步,只有m个correspondences保留,p_{f}是T次都没有成功选到m个correspondences的概率。

Result

这是synthetic data上的,点云S和D虽然角度不同,但是overlap率是非常高的。这里的“overlap实验”是固定点云S,然后减少D的点数做的。但是实际上,D中有的点,S中也基本都有。

real data 实验用的是Redroom,可以看到,数据集本身的overlap率还是挺高的。所以实际上文中缺乏“真正意义上的low overlap”的实验。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值