探索Google Earth Engine:超级全的NDVI时间序列分析

前两天,小编结合教材所学,和大家共同学习了降水和气温数据的时间序列分析。要说降水是蓝色,气温是红色,那今天我们探讨的绿色,是植被的颜色。在遥感领域,地表植被覆盖状况的长时间序列变化监测一直都是热点问题,围绕植被遥感衍生出来的相关指数较多,其中,归一化植被指数(NDVI)和增强型植被指数(EVI)应用比较广泛,今天我们从比较简单的NDVI指数出发,来分析时间序列变化状况,后续小编会在今天的基础上进一步探讨植被覆盖率(FVC)的计算,时间序列的滤波处理,植被覆盖率的sen-MK检验等在GEE上的实现,请各位友友浅浅期待一下哦!!!

话不多说,开启今天的学习之旅!

1.数据来源说明

学过遥感的伙伴应该明白,植被指数能够通过波段的相互运算得到,今天我们不搞这些复杂的,我们先用现有的产品来做案例,后面再利用原始影像进行计算。说到这里,就得感谢MODIS提供多种多样的数据产品,上一份案例我们利用它的温度产品,今天我们在GEE上找到了MODIS提供的植被指数产品。(ps:现成的数据对初学者比较友好,大家可以在GEE的dataset中查找相关的数据,只要你动动手,GEE的数据库一般都会满足你的愿望。

### 如何在 ENVI 中进行 NDVI 时间序列分析 #### 准备工作 为了在ENVI中执行NDVI时间序列分析,需先准备好一系列相同区域、同一传感器源的多时相遥感图像数据集。这些图像是后续处理的基础。 #### 数据预处理 对于获取到的数据,在正式开展NDVI计算之前,通常还需要完成辐射定标、大气校正等一系列预处理操作以提高精度[^1]。 #### 计算NDVI值 一旦完成了上述准备工作,则可以针对每一期影像单独计算其对应的NDVI数值。这一步骤可通过调用ENVI内置工具来快速实现。具体来说就是选择菜单栏中的`Basic Tools -> Band Math...`, 然后输入表达式`(b2-b1)/(b2+b1)` (假设近红外波段位于第2通道而红光波段处于第1通道位置), 进行批量运算得到各时刻下的NDVI结果文件[^3]。 ```matlab % 假设已加载两幅影像至workspace, 分别命名为img NIR 和 img Red ndvi = (double(img_NIR) - double(img_Red)) ./ (double(img_NIR) + double(img_Red)); ``` #### 构建时间序列 当拥有了多个不同时刻的NDVI产品之后,下一步便是将它们按照日期顺序排列起来形成连续的时间序列结构。此时可借助于IDL编程语言编写脚本自动读取指定目录下所有符合条件的*.hdr文件,并依次提取其中感兴趣区内的像元灰度均值作为代表性的植被生长状态指标保存下来供后期绘图展示之用。 #### 趋势分析与可视化呈现 最后一步是对整个时间段内所记录下来的NDVI平均值得变化规律展开深入探讨。这里推荐采用变异系数法以及Sen斜率估计配合Mann-Kendall检验来进行定量描述;与此同时还可以绘制折线图直观反映出随季节更替呈现出怎样的波动模式[^2]。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

梧桐GIS

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值