YOLOv11架构革新——基于RFEM模块的小目标感受野增强与特征优化

目标检测是计算机视觉中的核心任务之一,广泛应用于自动驾驶、安防监控、工业检测等领域。近年来,YOLO(You Only Look Once)系列算法凭借其高效性和准确性,成为实时目标检测领域的标杆。然而,在面对小目标检测场景时,YOLO系列算法仍存在以下问题:①感受野不足 :小目标通常占据图像中的少量像素,而传统的卷积神经网络(CNN)感受野有限,难以充分捕获小目标的全局上下文信息。②特征表达能力弱:小目标的特征信息较为稀疏,容易在深层网络中被忽略或丢失。
为克服上述问题,本文提出了一种基于感受野增强模块(RFEM)的YOLOv11架构改进方案。RFEM模块通过多尺度特征融合和注意力机制,有效增强了模型对小目标的感受野建模能力,同时优化了特征提取过程,显著提升了小目标检测性能。

1. RFEM模块设计

感受野是卷积神经网络中每个输出单元能够感知到的输入区域范围。对于小目标检测任务而言,感受野的大小直接影响模型对目标全局上下文信息的捕捉能力。传统的卷积操作受限于固定的感受野范围,难以适应不同尺度目标的需求。RFEM</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Stara-AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值