目标检测是计算机视觉中的核心任务之一,广泛应用于自动驾驶、安防监控、工业检测等领域。近年来,YOLO(You Only Look Once)系列算法凭借其高效性和准确性,成为实时目标检测领域的标杆。然而,在面对小目标检测场景时,YOLO系列算法仍存在以下问题:①感受野不足 :小目标通常占据图像中的少量像素,而传统的卷积神经网络(CNN)感受野有限,难以充分捕获小目标的全局上下文信息。②特征表达能力弱:小目标的特征信息较为稀疏,容易在深层网络中被忽略或丢失。
为克服上述问题,本文提出了一种基于感受野增强模块(RFEM)的YOLOv11架构改进方案。RFEM模块通过多尺度特征融合和注意力机制,有效增强了模型对小目标的感受野建模能力,同时优化了特征提取过程,显著提升了小目标检测性能。
1. RFEM模块设计
感受野是卷积神经网络中每个输出单元能够感知到的输入区域范围。对于小目标检测任务而言,感受野的大小直接影响模型对目标全局上下文信息的捕捉能力。传统的卷积操作受限于固定的感受野范围,难以适应不同尺度目标的需求。RFEM</