6、处理多维特征的输入

(1)在实际应用中,我们会遇到多个输入、一个输出的分类问题,如下图所示糖尿病数据集,x1~x8表示糖尿病的相关指标,Y表示第二年患糖尿病的概率。

 (2)为了处理多维特征的输入,我们需要用多维度的Logistic回归模型,解决的也是二分类问题

(3)mini-batch:一次运行一个mini-batch,更新一次梯度

 (4)数据集为上述糖尿病数据集。按照神经网络的思想,可以将8维的输入变为6维的输出,6维的输入变为4维的输出,4维的输入变为1维的输出,模型定义如下:

 (5)损失函数使用解决二分类问题的交叉熵损失函数,优化器使用SGD随机梯度下降更新权重

(6)代码实现:

import torch
import  numpy as np
#delimiter分隔符
xy = np.loadtxt('diabetes.csv.gz', delimiter=',', dtype=np.float32)
#最后一列不要
x_data = torch.from_numpy(xy[:,:-1])
#只要最后一列,加[]保证是矩阵,不是向量
y_data = torch.from_numpy(xy[:, [-1]])

class Model(torch.nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.linear1 = torch.nn.Linear(8, 6)
        self.linear2 = torch.nn.Linear(6, 4)
        self.linear3 = torch.nn.Linear(4, 1)
        # 这个模块中没有参数,不需要训练
        self.sigmoid = torch.nn.Sigmoid()
        #self.activate = torch.nn.RuLU()

    def forward(self, x):
        x = self.sigmoid(self.linear1(x))
        x = self.sigmoid(self.linear2(x))
        x = self.sigmoid(self.linear3(x))
        # x = self.activate(self.linear1(x))
        # x = self.activate(self.linear2(x))
        # x = self.activate(self.linear3(x))
        return x

model = Model()
#二分类损失函数
criterion = torch.nn.BCELoss(size_average=True)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)

for epoch in range(100):
    #Forward
    y_pred = model(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss.item())

    #Backward
    optimizer.zero_grad()
    loss.backward()
    #Update
    optimizer.step()

结果输出:

 

(7)可选用其他激活函数测试

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值