💗💗💗欢迎来到我的博客,你将找到有关如何使用技术解决问题的文章,也会找到某个技术的学习路线。无论你是何种职业,我都希望我的博客对你有所帮助。最后不要忘记订阅我的博客以获取最新文章,也欢迎在文章下方留下你的评论和反馈。我期待着与你分享知识、互相学习和建立一个积极的社区。谢谢你的光临,让我们一起踏上这个知识之旅!
🥦引言
在机器学习和深度学习领域,我们经常会面对具有多维特征输入的问题。这种情况出现在各种应用中,包括图像识别、自然语言处理、时间序列分析等。PyTorch是一个强大的深度学习框架,它提供了丰富的工具和库,可以帮助我们有效地处理这些多维特征输入数据。在本篇博客中,我们将探讨如何使用PyTorch来处理多维特征输入数据。
🥦前期的回顾与准备
这里我们采用一组预测糖尿病的数据集,如下图
这里的每一行代表一个样本,同样的,每一列代表什么呢,代表一个特征,如下图。所以糖尿病的预测由下面这八个特征共同进行决定
按照过去的逻辑回归,应该是下图所示的,因为这是单特征值
但是现在由单特征值已经转变为多特征值了,所以我们需要对每个特征值进行处理,如下图
中间的特征值与权重的点乘可以从矩阵的形式进行表现
因为逻辑回归所以还有套一个Sigmoid函数,通常情况下我们将函数内的整体成为z(i)
注意: Sigmoid函数是一个按向量方式实现的
下面我们从矩阵相乘的形式进行展示,说明可以将一组方程合并为矩阵运算,可以想象为拼接哈。这样的目的是转化为并行运算,从而实现更快的运行速度。
所以从代码的角度去修改,我们只需要改变一下维度就行了
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear = torch.nn.Linear(8, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear(x))
return x
model = Model()
这里的输入维度设置为8,就像上图中展示的x一样是N×8形式的矩阵,而 y ^ \hat{y} y^是一个N×1的矩阵。
这里我们将矩阵看做是一个空间变换的函数
我们可以从下图很好的展示多层神经网络的变换
从一开始的属于8维变为输出6维,再从输入的6维变为输出的4维,最后从输入的4维变为输出的1维。
如果从代码的角度去写,可以从下面的代码进行实现
class Model(torch.nn.Module):
def __init__(self):
super(Model, self).__init__()
self.linear1 = torch.nn.Linear(8, 6)
self.linear2 = torch.nn.Linear(6, 4)
self.linear3 = torch.nn.Linear(4, 1)
self.sigmoid = torch.nn.Sigmoid()
def forward(self, x):
x = self.sigmoid(self.linear1(x))
x = self.sigmoid(self.linear2(x))
x = self.sigmoid(self.linear3(x))
return x
model = Model()
这里我说明一下下面这条语句
- self.sigmoid = torch.nn.Sigmoid():这一行创建了一个 Sigmoid 激活函数的实例,用于在神经网络的正向传播中引入非线性。
后面的前向计算就是一层的输出是另一层输入进行传,最后将 y ^ \hat{y} y^返回
同时我们的损失函数也没有变化,更新函数也没有变化,采用交叉熵和梯度下降
刘二大人这里没有使用Mini-Batch进行批量,后续的学习应该会更新
🥦代码实现
import torch
import torch.nn as nn
import torch.optim as optim
from sklearn import datasets
from sklearn.model_selection import train_test_split
import numpy as np
# 载入Diabetes数据集
diabetes = datasets.load_diabetes()
# 将数据集拆分为特征和目标
X = diabetes.data # 特征
y = diabetes.target # 目标
# 数据预处理
X = (X - np.mean(X, axis=0)) / np.std(X, axis=0) # 特征标准化
# 拆分数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 转换为PyTorch张量
X_train = torch.FloatTensor(X_train)
y_train = torch.FloatTensor(y_train).view(-1, 1) # 将目标变量转换为列向量
X_test = torch.FloatTensor(X_test)
y_test = torch.FloatTensor(y_test).view(-1, 1)
# 构建包含多个线性层的神经网络模型
class DiabetesModel(nn.Module):
def __init__(self, input_size):
super(DiabetesModel, self).__init__()
self.fc1 = nn.Linear(input_size, 64) # 第一个线性层
self.fc2 = nn.Linear(64, 32) # 第二个线性层
self.fc3 = nn.Linear(32, 1) # 最终输出线性层
def forward(self, x):
x = torch.relu(self.fc1(x)) # ReLU激活函数
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# 初始化模型
input_size = X_train.shape[1]
model = DiabetesModel(input_size)
# 定义损失函数和优化器
criterion = nn.MSELoss() # 均方误差损失
optimizer = optim.SGD(model.parameters(), lr=0.01)
# 训练模型
num_epochs = 1000
for epoch in range(num_epochs):
# 前向传播
outputs = model(X_train)
loss = criterion(outputs, y_train)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (epoch + 1) % 100 == 0:
print(f'Epoch [{epoch + 1}/{num_epochs}], Loss: {loss.item():.4f}')
# 在测试集上进行预测
model.eval()
with torch.no_grad():
y_pred = model(X_test)
# 计算性能指标
mse = nn.MSELoss()(y_pred, y_test)
print(f"均方误差 (MSE): {mse.item():.4f}")
运行结果如下
感兴趣的同学可以使用不同的激活函数一一测试一下
比如我使用tanh函数测试后得到的均方误差就小了许多
此链接是GitHub上的大佬做的可视化函数https://dashee87.github.io/deep%20learning/visualising-activation-functions-in-neural-networks/
🥦总结
这就是使用PyTorch处理多维特征输入的基本流程。当然,实际应用中,你可能需要更复杂的神经网络结构,更大的数据集,以及更多的调优和正则化技巧。但这个指南可以帮助你入门如何处理多维特征输入的问题,并利用PyTorch构建强大的深度学习模型。希望这篇博客对你有所帮助!
挑战与创造都是很痛苦的,但是很充实。