高等数学笔记:前奏

引入

为什么要有高等数学呢?
先来两道题,感受一下高等数学的魅力。

问题

问题 ①:
lim ⁡ n → ∞ ( 1 n 2 + n + 1 + 2 n 2 + n + 2 + ⋯ + n n 2 + n + n ) = ? \lim_{n \rightarrow \infty} \left( \frac{1}{n^2+n+1}+\frac{2}{n^2+n+2}+\dots+\frac{n}{n^2+n+n} \right)=? nlim(n2+n+11+n2+n+22++n2+n+nn)=?
解答 ①:

x n = ( 1 n 2 + n + 1 + 2 n 2 + n + 2 + ⋯ + n n 2 + n + n ) , x_n = \left( \frac{1}{n^2+n+1}+\frac{2}{n^2+n+2}+\dots+\frac{n}{n^2+n+n} \right), xn=(n2+n+11+n2+n+22++n2+n+nn),
则有
( 1 n 2 + n + n + 2 n 2 + n + n + ⋯ + n n 2 + n + n ) ≤ x n ( 1 + n ) n 2 n 2 + n + n ≤ x n ( 1 + n ) n 2 n ( n + 2 ) ≤ x n 1 2 ≤ n + 1 2 ( n + 2 ) ≤ x n , \begin{aligned} \left( \frac{1}{n^2+n+n}+\frac{2}{n^2+n+n}+\dots+\frac{n}{n^2+n+n} \right) & \leq x_n \\ \frac{\frac{(1+n)n}{2}}{n^2+n+n} & \leq x_n \\ \frac{(1+n)n}{2n(n+2)} & \leq x_n \\ \frac{1}{2} \leq \frac{n+1}{2(n+2)} & \leq x_n, \\ \end{aligned} (n2+n+n1+n2+n+n2++n2+n+nn)n2+n+n2(1+n)n2n(n+2)(1+n)n212(n+2)n+1xnxnxnxn,

x n ≤ ( 1 n 2 + n + 1 + 2 n 2 + n + 1 + ⋯ + n n 2 + n + 1 ) x n ≤ ( 1 + n ) n 2 n 2 + n + 1 x n ≤ ( n 2 + n ) 2 ( n 2 + n + 1 ) ≤ 1 2 , \begin{aligned} x_n & \leq \left( \frac{1}{n^2+n+1}+\frac{2}{n^2+n+1}+\dots+\frac{n}{n^2+n+1} \right) \\ x_n & \leq \frac{\frac{(1+n)n}{2}}{n^2+n+1} \\ x_n & \leq \frac{(n^2+n)}{2(n^2+n+1)} \leq \frac{1}{2}, \\ \end{aligned} xnxnxn(n2+n+11+n2+n+12++n2+n+1n)n2+n+12(1+n)n2(n2+n+1)(n2+n)21,


1 2 ≤ x n ≤ 1 2 . \frac{1}{2} \leq x_n \leq \frac{1}{2}. 21xn21.
得到
lim ⁡ n → ∞ x n = lim ⁡ n → ∞ ( 1 n 2 + n + 1 + 2 n 2 + n + 2 + ⋯ + n n 2 + n + n ) = 1 2 . \lim_{n \rightarrow \infty} x_n = \lim_{n \rightarrow \infty} \left( \frac{1}{n^2+n+1}+\frac{2}{n^2+n+2}+\dots+\frac{n}{n^2+n+n} \right) = \frac{1}{2}. nlimxn=nlim(n2+n+11+n2+n+22++n2+n+nn)=21.

问题 ②:
x n = 2 2 … 2 ⏟ n 重 根 号 x_n = \underbrace{\sqrt{2\sqrt{2\dots\sqrt{2}}}}_{n 重根号} xn=n 222 ,考虑 { x n } \{x_n\} {xn} 的收敛性,并求极限.

解答 ②:
分析: x 1 = 2 x_1 = \sqrt{2} x1=2 x 2 = 2 2 = 2 x 1 x_2 = \sqrt{2\sqrt{2}} = \sqrt{2x_1} x2=22 =2x1 … \dots x n + 1 = 2 x n x_{n+1} = \sqrt{2x_n} xn+1=2xn x n > 0 x_n > 0 xn>0)。
假定 x k < 2 x_k < 2 xk<2,则 x k + 1 = 2 x k < 2 ⋅ 2 = 2 x_{k+1} = \sqrt{2x_k} < \sqrt{2 \cdot 2} = 2 xk+1=2xk <22 =2
所以 0 < x n < 2 0 < x_n < 2 0<xn<2
x n + 1 − x n = 2 x n − x n > x n ⋅ x n − x n = 0. x_{n+1} - x_n = \sqrt{2x_n} - x_n > \sqrt{x_n \cdot x_n} - x_n = 0. xn+1xn=2xn xn>xnxn xn=0.
{ x n } \{x_n\} {xn} 单增有上界。


lim ⁡ n → ∞ x n = a , \lim_{n \rightarrow \infty} x_n = a, nlimxn=a,

a = 2 a , a = \sqrt{2a}, a=2a ,

得到 a = 2 a = 2 a=2

修改记录

时间修改内容
2022年1月4日标题
  • 2
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值