一、超图(Hypergraph)概念
首先,对于超图的严格数学定义,维基百科上是这样写的:
In mathematics, a hypergraph is a generalization of a graph, where an edge can connect any number of vertices. Formally, a hypergraph H is a pair H = (X,E) where X is a set of elements, called nodes or vertices, and E is a set of non-empty subsets of X called hyperedges or links.(在数学中,超图是对图的概括,其中一条边可以连接任意数量的顶点。形式上,超图H是一对H = (X,E),其中X是一组元素,称为节点或顶点,E是X的一组非空子集,称为超边或链接。)
简单来说,我们所熟悉的图而言,它的一条边(edge)只能连接两个顶点(vertice);而超图,人们定义它的一条边(hyperedge)可以和任意个数的顶点连接。图与超图的对比示意图如下:


在图2的超图中蓝色、红色和绿色是三条超边,分别记为e1,e2,e3,有五个顶点(v1,v2,v3,v4,):
蓝边e1连接三个顶点(v1,v2,v5);
红边e2连接三个顶点(v3,v4,v5);
绿边e3连接两个顶点(v2,v4)。
二、k-均匀超图(k-uniform hypergraph)
从超图中引申出来的一个概念就是k-均匀超图(k-uniform hypergraph),它是指超图的每条边连接的顶点数相同,个数都为k。其中的2-均匀超图就是我们平常所见到的传统意义上的图。所以图是超图的一种特殊类型。