如何使用八爪鱼爬取有价值的商业数据?

因为我是做汽车行业的,可以用八爪鱼爬虫抓取汽车之家和微博上的汽车文章内容,分析各种电动汽车口碑数据。

之前,我写过很多Python网络爬虫的案例,使用requests、selenium等技术采集数据,这次尝试去采集小米SU7在微博、汽车之家上的舆论数据,分析下小米SU7的口碑到底怎么样,用户关心和吐槽的点有哪些。

但这次我们不用Python爬虫来采集数据,而用一个无代码爬虫工具-八爪鱼,因为我担心采集复杂的数据用Python代码可能太复杂,比较费时间,而八爪鱼工具可以几分钟就能完成设置,爬取相应的数据。

然后,我会用AI工具来分析舆情数据,能得出一些有意思的结论,比如你知道用户对比小米SU7最大的竞品是什么吗?

无代码爬虫工具--八爪鱼

我们知道爬虫涉及到http请求、网页解析、解锁、异步等技术,有各种反爬机制,说实话挺繁琐的。

相比较requests、selenium等代码框架,八爪鱼是一个完全无代码的图形化客户端工具,类似于pandas和excel的区别。

八爪鱼把爬虫用到的所有技术都装进一个黑盒子里,你只需要点点点,就可以完成爬虫的设置,即使对于很复杂的数据采集任务,也能几分钟搞定。

而且八爪鱼集成了RPA自动化流程,类似于微软的Power Automate,你可以设置固定的步骤,它会自动帮你去执行爬虫,从数据采集、清洗到存储,完全自动化。

对于爬虫的安全问题,也不用担心,这个工具是在安全协议内采集数据,会遵守每个网站的robots.txt文件,确保数据采集安全合规。

八爪鱼数据采集使用技巧

下载和登录八爪鱼软件

你可以先登录八爪鱼官网,注册好后,再下载八爪鱼客户端,然后登录使用即可,非常的简单。

注册和下载地址:

https://affiliate.bazhuayu.com/csdnzwj

新建数据采集流程

这次我们想采集微博和汽车之家上关于小米SU7的内容和帖子,需要新建采集任务,输入相应的url,并设置配置信息。

比如说,你想抓取雷布斯关于SU7微博下面的评论,只需要输入网址,然后设置登录信息,并自动识别采集数据,八爪鱼就会自动采集所有评论数据。

使用采集模板

其实还有更加简单的数据采集方法,八爪鱼提供了上百种常用网站采集的模板,比如微博、百度、京东、B站、汽车之家等等,你只需要选择对应模板,直接输入url或者搜索关键词,就可以采集数据。

这些采集模板是八爪鱼专门针对高频采集需求开发的,相当于爬虫“快捷键”,而且这些采集模板还在持续更新,热门网站和热点数据,统统”一键“抓取。

采集微博和汽车之家-小米SU7数据

我们这次采集微博和汽车之家上小米SU7数据,也是用现成的模板,非常快捷方便。

首先,采集汽车之家上关于小米SU7的内容数据,先找到模板,再设置搜索关键词-小米SU7。

可以看到,它会自动采集汽车之家上小米SU7的内容数据,字段包含标题、发布者、时间、内容、网址等等。

采集好后,自动导出到本地,选择excel或其他数据格式。

微博也是一样的设置,我们只需要找到对应的模板,输入搜索关键词-小米SU7,就可以采集帖子内容。

好了,可以看到八爪鱼采集数据非常简单,如果用Python来实现的上述两个爬虫的话,至少得几百行代码,而且还要处理动态页面、登录、反爬等各种麻烦的事,用八爪鱼就显得轻而易举了。

接下来,我们来分析上述两个数据集,看看小米SU7的舆情表现怎么样,为啥能这么火。

小米SU7舆情数据分析

这里先解释下两个数据集的规模,首先汽车之家内容数据集有300条数据,都是通过关键词小米SU7搜索出来的相关文章。

微博帖子数据集有500条数据,也是关于小米SU7的帖子。

舆情分析的思路有四个方面,一是看小米SU7的卖点,二是看小米SU7的槽点,三是看用户最关心的问题和期待,四是看竞品有哪些。

这次分析的工具采用Kimi AI,读取excel数据文件,然后分析结论。

汽车之家-小米SU7舆情分析

「卖点分析」

AI Prompt:请分析这个数据集,这是汽车之家上关于小米SU7的文章,首先你的任务是分析内容列的文本数据,输出提及到的小米SU7最主要的10个卖点,按照词频排序

「槽点分析」

AI Prompt:接下来,你需要分析提及到的小米SU7最主要的3个吐槽点,按照词频顺序

「分析用户最关心的问题和期待」

AI Prompt:接下来,你需要分析提及到的用户对小米SU7最关心的期待和问题,列出3个,按照词频顺序 AI Prompt:你需要提供它们出现的频次数据

「竞品分析」

AI Prompt:接下来,你的任务是输出提到的小米SU7的前3竞品车型,以及入选理由,按照词频排序

微博-小米SU7舆情分析

「卖点和槽点分析」

AI Prompt:请分析这个数据集,这是微博上关于小米SU7的帖子数据,首先你的任务是分析博文内容列的文本数据,输出提及到的小米SU7最主要的5个卖点和5个槽点,按照词频排序,并参考帖子点赞、评论数据权重

「竞品分析」

AI Prompt:接下来,你的任务是输出提到的小米SU7的前3竞品车型,以及入选理由,按照词频排序

总结

采集并分析了小米SU7在汽车之家和微博的舆情数据后,会发现智能驾驶、续航、外观、性能是用户点赞比较多的方面,同时争议比较多的是价格、交付、售后等,竞品层面Model 3无疑是用户纠结对比最多的车型。

熟话说,工欲善其事,必先利其器,八爪鱼爬虫工具抓取数据真的节省了大量代码开发的时间,包括AI工具也能有效地提升数据分析效率,赶紧用起来吧!

使用路径很简单,先登录八爪鱼官网,注册好后,再下载八爪鱼客户端,然后登录使用即可。

注册和下载地址:

https://affiliate.bazhuayu.com/csdnzwj

<think>好的,我需要帮助用户了解关于乐山市旅游景点网络舆情数据分析的报告、工具和方法。首先,用户的需求集中在如何获取和分析乐山市旅游景点的网络舆情数据,所以他们可能想知道具体的数据来源、分析工具以及常用的方法。接下来,我需要确保回答结构清晰,分步骤说明,同时遵循系统级指令,比如使用正确的中文和LaTeX格式,以及生成相关问题。 首先,数据收集部分,用户需要知道从哪里获取数据。常见的来源包括社交媒体平台(微博、微信、抖音)、旅游平台(携程、马蜂窝)、新闻媒体(乐山本地新闻网站)以及论坛和博客(知乎、贴吧)。这部分需要列出具体平台,并简要说明每个平台的特点,比如微博适合实时舆情监测,而旅游平台则提供游客评价。同时,引用用户提供的参考文献中的“数据挖掘”概念,强调从大量数据中发现价值信息[^1]。 然后是数据分析工具。这里需要区分开源工具和商业工具。Python数据分析库(如Pandas、Numpy)和可视化库(Matplotlib、Seaborn)是开源工具的例子,而商业工具可能包括百度指数、新浪微热点等。需要提到自然语言处理工具如Jieba和SnowNLP,用于中文文本处理。此外,网络爬虫工具如Scrapy和八爪鱼也是重要的收集工具。这些工具帮助进行数据清洗、分析和可视化,符合用户提到的数据挖掘环节。 接下来是分析方法,包括文本情感分析、主题模型分析、时间序列分析和网络传播分析。每个方法需要简要说明其应用,比如情感分析判断游客情绪,主题模型(如LDA)提取热点话题。时间序列分析预测舆情趋势,网络传播分析识别关键节点。这里可能需要使用一些数学公式,比如LDA模型的概率分布,按照系统指令用$$...$$格式呈现,例如: $$p(\theta, z, w | \alpha, \beta) = p(\theta|\alpha) \prod_{n=1}^N p(z_n|\theta)p(w_n|z_n, \beta)$$ 此外,结合数据挖掘中的聚类分析,如用户引用的部分,可以提到聚类分析在舆情分析中的应用,例如将相似话题归类。 报告生成部分需要说明工具,如Word、PowerPoint、Tableau,以及如何结合数据可视化工具生成图表。最后,给出一个分析流程示例,帮助用户理解整个过程。 生成的相关问题需要围绕用户可能进一步关心的点,比如数据收集的法律问题、免费工具推荐、情感分析的具体方法、时间序列预测模型以及如何识别虚假信息。这些问题应该覆盖用户可能遇到的后续疑问,并引导他们深入了解更多细节。 最后,检查是否所有行内数学表达式使用$...$,独立公式用$$...$$,并且引用正确添加在段落末尾。确保回答结构清晰,分点明确,符合用户需求。</think>### 乐山市旅游景点网络舆情数据分析方法与工具 #### 1. **数据收集工具与方法** - **数据来源** - **社交媒体平台**: 微博、微信、抖音等(实时舆情监测,例如游客对乐山大佛、峨眉山景点的评价)。 - **旅游平台**: 携程、马蜂窝、飞猪(游客评论、评分数据)。 - **新闻媒体**: 乐山本地新闻网站、省级旅游频道(报道与景区相关的舆情事件)。 - **论坛与博客**: 知乎、贴吧(深度讨论与攻略分享)。 - **爬虫工具** - 开源工具: Python的`Scrapy`、`BeautifulSoup`(适合定向抓取结构化数据)。 - 商业工具: 八爪鱼、神箭手(无需编程,支持多平台数据采集)。 #### 2. **数据分析工具** - **开源工具** - `Python`库: - 数据处理: `Pandas`、`Numpy` - 文本分析: `Jieba`(分词)、`SnowNLP`(情感分析) - 可视化: `Matplotlib`、`Seaborn` - **示例代码(情感分析)**: ```python from snownlp import SnowNLP text = "乐山大佛景区服务很周到,但节假日人太多。" s = SnowNLP(text) print(s.sentiments) # 输出情感得分(0-1,越接近1表示正面) ``` - **商业工具** - 百度指数、新浪微热点(舆情热度趋势分析)。 - 腾讯云智研(支持多维度舆情画像)。 #### 3. **分析方法** - **文本情感分析** 通过情感得分$S \in [0,1]$量化游客评价,例如: $$S = \frac{\text{正面词汇数}}{\text{总词汇数}} \times \text{权重系数}$$ 结合语义分析判断舆情倾向。 - **主题模型分析** 使用隐狄利克雷分布(LDA)提取高频主题,例如: $$p(\theta, z, w | \alpha, \beta) = p(\theta|\alpha) \prod_{n=1}^N p(z_n|\theta)p(w_n|z_n, \beta)$$ 可发现“景区拥堵”“服务质量”等话题聚类。 - **时间序列分析** 利用ARIMA模型预测舆情趋势: $$y_t = c + \phi_1 y_{t-1} + \cdots + \phi_p y_{t-p} + \epsilon_t + \theta_1 \epsilon_{t-1} + \cdots + \theta_q \epsilon_{t-q}$$ 适用于节假日客流相关的舆情波动预测。 - **网络传播分析** 通过社交网络图识别关键传播节点(如KOL账号),分析舆情扩散路径。 #### 4. **报告生成工具** - **数据可视化**: Tableau、Power BI(生成舆情热力图、情感分布图)。 - **文档整合**: Microsoft Word、Google Docs(结构化报告模板)。 #### 5. **分析流程示例** 1. 爬取乐山景点相关评论数据(如峨眉山金顶的近期评价)。 2. 清洗数据并计算情感得分。 3. 使用LDA模型提取主题,识别“交通”“门票价格”等焦点问题。 4. 结合时间序列预测国庆期间舆情风险。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱卫军 AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值