本文基于pytorch框架实现2层的GCN,以空手道网络的Louvain算法结果作为标签,训练得到准确率。
import numpy as np
import networkx as nx
import matplotlib.pyplot as plt
import community as community_louvain
import torch
import torch_geometric
from torch_geometric.data import InMemoryDataset, Data
G = nx.karate_club_graph()
x = torch.eye(G.number_of_nodes(), dtype=torch.float)
adj = nx.to_scipy_sparse_matrix(G).tocoo()
row = torch.from_numpy(adj.row.astype(np.int64)).to(torch.long)
col = torch.from_numpy(adj.col.astype(np.int64)).to(torch.long)
edge_index = torch.stack([row, col], dim=0)
# Compute communities.
partition = community_louvain.best_partition(G)
print(set(partition.values()))
y = torch.tensor([partition[i] for i in range(G.number_of_nodes())])
print(y)
# Select a single training node for each community
# (we just use the first one).
train_mask = torch.zeros(y.size(0), dtype=torch.bool)
for i in range(int(y.max()) + 1):
train_mask[(y == i).nonzero(as_tuple=False)[0]] = True
data = Data(x=x, edge_index=edge_index, y=y, train_mask=train_mask)
remaining = (~data.train_mask).nonzero(as_tuple=False).view(-1)
remaining = remaining[torch.randperm(remaining.size(0))]
data.test_mask = torch.zeros(y.size(0), dtype=torch.bool)
data.test_mask.fill_(False)
data.test_mask[remaining[:]] = True
import torch.nn.functional as F
from torch_geometric.nn import GCNConv # GCN
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = GCNConv(data.num_node_features, 16) # 第一层输入维度,输出维度为16
self.conv2 = GCNConv(16, 4) # 第二层输入维度 16, 输出维度 34
def forward(self):
x, edge_index = data.x, data.edge_index
x = self.conv1(x, edge_index)
x = F.relu(x) # 激活函数 ReLU
x = F.dropout(x, training=self.training)
x = self.conv2(x, edge_index)
return F.log_softmax(x, dim=1)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 本电脑只有一个GPU 要改为 0
print(device)
model, data = Net().to(device), data.to(device)
# 优化器
optimizer = torch.optim.Adam([
dict(params=model.conv1.parameters(), weight_decay=5e-4),
dict(params=model.conv2.parameters(), weight_decay=0)
], lr=0.001) # Only perform weight-decay on first convolution.
def train():
optimizer.zero_grad()
out = model()
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
return loss
def test():
model.eval()
logits, accs = model(), []
for _, mask in data('train_mask', 'test_mask'):
pred = logits[mask].max(1)[1]
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
accs.append(acc)
return accs
for epoch in range(1, 1001):
loss = train()
log = 'Epoch: {:04d}, Train: {:.4f}, Test: {:.4f}, Loss: {:.4f}'
a = log.format(epoch, *test(), loss)
print(a)
结果: