生成式AI教育产品:深度解析教育各环节的智能化教学

随着人工智能技术的飞速发展,教育行业迎来了一场革命性的变革。

2024年,AI教育产品不仅在课堂上大放异彩,更在课前备课、课后辅导、教研支持等各个环节发挥着重要作用。

本文将为您全面总结AI教育产品如何渗透教育的每一个环节,并介绍一系列前沿产品及其功能。

课前备课:创意工坊

在备课环节,教师需要将教学资源转化为互动性强、易于理解的内容。

链接:https://www.magicschool.ai/

MagicSchool.ai、Eduaide.ai和Playlab.ai等产品通过快速转化课件、教科书、视频等资源,提供了互动视频、闪卡、概念解释和小游戏等教学工具。

链接:https://web.diffit.me/

Diffit和Copilot则通过AI技术,帮助教师根据特定标准自动生成教学材料和教案,极大提升了备课效率。

课堂互动:激发学习热情

课堂上,如何激发学生的参与度和兴趣是关键。

链接:https://www.teachology.ai/

technology.ai和Curipod等产品通过构建基于特定评分标准的测验和教学活动,帮助教师节省设计时间,同时提供个性化的课堂练习。

链接:https://mizou.com/#!

Atypical和Mizou等产品则通过虚拟问答机器人和课堂讨论问题生成器,促进学生的主动学习和深入思考。

学习管理:精准追踪

学习管理环节,AI产品通过分析学生数据,帮助教师和学生了解学习进度

链接:https://www.projectleo.net/

Project Leo和doowii等工具通过统计分析学生在不同平台上的学习数据,为教师提供学生的学习进度报告,帮助他们及时调整教学策略。

评估与考核:公正评判

在评估与考核环节,GPTZero等产品通过检测学生答案,防止AI作弊,确保考试的公正性。

链接:https://gptzero.me/

Mathnet和Sorcerer等工具则通过整体性评估,深入理解学生的数学思维能力,为教师提供更全面的评估结果。

教研支持:知识更新

教师在教研过程中需要不断更新知识库。

链接:https://www.teachinglab.ai/

EduGPT和TeachingLab.ai等产品为教师提供备课、教研的建议,帮助他们保持教学内容的前沿性,并创新教学方法。

学生自主学习:个性化导师

学生在自主学习时,可以通过Quill、Duolingo等语言辅导工具,或ChatGPT、Khanmigo等数学知识辅导应用,获得个性化的学习资源和指导。

链接:https://www.duolingo.com/

Project Read和Microsoft Reading Coach等阅读学习工具,通过智能分析学生的阅读习惯,提供定制化的阅读建议。

链接:https://www.projectread.ai/?

特殊需求支持:关怀之声

对于有特殊需求的学生,Goblin.tools、Woebot Health和Koko等产品提供基于对话式的心理健康咨询和辅导,确保每一位学生都能获得必要的支持和关怀。

链接:https://woebothealth.com/

校外辅导:延伸课堂

校外机构通过SchoolAI、Kyron等产品,提供AI辅导和拟人辅导服务,帮助学生在家庭环境中也能获得高质量的学习支持,实现学习的无缝衔接。

链接:https://schoolai.com/

结语

2024年的AI教育产品不仅仅是技术的展示,它们是教育革新的推动者。

从课前备课到课后复习,从个性化教学到特殊需求支持,AI教育产品正在全方位地提升教学和学习的质量。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值