干货!大模型的训练过程详解

这一年当中算法技术的发展可以说是日新月异。今天和大家聊聊大模型的训练的三个阶段,分别为有监督学习(SFT)、奖励模型训练(RW)与强化学习(PPO)阶段,我对以上的训练过程会加上一些自己的理解。

GPT使用Transformer decoder部分作为语言模型的框架,并将decoder中的Multi-head Attention层删除,其结构和计算过程如上图。因为decoder中的第一个自注意力计算中有Mask机制,所以计算每个单词的预测概率时,只考虑一句话中某个词的左侧词汇信息(单向Transformer)对本词进行预测,并不像Bert和ELMo一样有上下文信息,所以Mask的使用使模型看不见未来的信息,得到的模型泛化能力更强。

其中各个研究院对部分细节有所改良,比如:

  • 使用了前归一化(Post-Norm),解释是整体上更难出现梯度消失的问题,使得模型的训练更加稳定。

  • 采用旋转位置编码(RoPE),与相对位置编码相比RoPE 具有更好的外推性。外推性是指大模型在训练时和预测时的输入长度不一致,导致模型的泛化能力下降的问题。

1 有监督学习(SFT)

这个阶段虽然称为有监督学习,但其实在具体实操中,它也是分为了两个步骤:

  1. 先使用大量语料进行无监督学习,训练出一个语言模型的基座,这就是大模型的generate方法,展现的是大模型的续写能力

  2. 人工整理QA语料对大模型进行有监督训练,这是大模型的chat方法,展现出了大模型的对话能力

2 Reward Model奖励模型训练

大模型会对一个问题回答出的多个不同答案,我们首先需要对这些答案进行优先级标注排序(不是直接打分,因为绝对分数很难统一,我们能更容易的判断出哪个回答更好,使用相对替代绝对),然后根据这个排序结果训练奖励模型。这个模型的底座就是第一阶段训练出的SFT模型,只是把最后一层改为一个神经元即可,就是输出的分数,为一个回归模型,后续将用这个模型对每个回答进行打分评估。

奖励模型的核心是它的损失函数:

其中c代表chosen,是排名较高的回答,r代表reject,是排名较低的回答。最终的目的就是使排名靠前的回答得分相应的变高。

比如Q:苹果是什么?

A1:苹果是一种红色水果,可以润肺、解暑、开胃。

A2:苹果的品种繁多,根据颜色、大小、口感和用途等不同特点,可以分为多个品种。有的苹果品种适合鲜食,口感脆甜;有的适合烹饪,如做苹果派或苹果酱;还有的适合制酒或制醋。此外,美国苹果公司是全球知名的科技公司。

A3:苹果是水果。

人工标记员打分A2>A1>A3,我们把QA2&QA1、QA2&QA3、QA1&QA3两两放入模型进行打分,然根据损失函数对模型进行反向传播,最后就可以使A2的分数高于A1、A1的分数高于A3。根据不同答案的优先级顺序,就可以训练出奖励模型。

3 强化学习PPO

强化学习的目标就是模型可以自我迭代,其损失函数包括两部分构成:

  1. 我们已经进行过有监督训练,所以希望模型的回答结果最好与之前SFT模型的回答分布相近,否则模型可能钻空子,回答一个与有监督答案不符,但是奖励模型给了高分的答案,可以理解为“幻觉问题”。

  2. 模型的回答都是高分回答。

我们就是想达到以上要求,所以设计出了如下一系列的训练方法,一共有四个主要模型,分别是:

  • Actor Model:演员模型,这就是我们想要训练的目标语言模型

  • Critic Model:评论家模型,它的作用是预期收益

  • Reward Model:奖励模型,它的作用是计算实际收益

  • Reference Model:参考模型,它的作用是给语言模型增加一些“约束”,防止语言模型训歪,使模型的回答结果最好与之前SFT模型的回答分布相近

Actor与Reference的初始化模型就是SFT模型,Reward与Critic的初始化模型就是Reward模型,其中Actor与Critic在后续训练中需要更新参数,而Reward与Reference Model是参数冻结的。

总步骤为下图标注所示,请大家参考:

第一步(1号)

给Actor模型输入问题Prompt,Actor模型会有两个输出:

  • 生成的回答response

  • 还有给出上一部分的文字,每生成下一个字的概率p(token|context),记为old_log_prob,是一个张量,长度就是response的长度

第二步(3号)

将问题与生成的回答作为输入:

  • 输入给Ref模型,会得出在原先模型下输出该句话的张量分布p(token|context),记为ref_log_prob,是一个张量,长度就是response的长度

  • 输入给Reward模型,会得出模型的实际收益,是一个分数

  • 输入给Critic模型,评论家会为 response 中的每个 token 计算一个预期收益,第 i个预期收益记为 values[i]

第三步(6号)

首先我们明确强化学习中的一个关键概念——优势。我们将优势定义为“实际获得的收益超出预期的程度”, PPO 计算优势的方法:优势=实际收益-预期收益。预期收益为Critic模型直接计算得出,我们来看看实际收益是如何设计算的。

在第一步与第二步中我们得到了在原先模型下输出的概率分布ref_log_prob与在Actor模型下输出的概率分布old_log_prob

来理解一下这个式子(简化的KL散度):

  • ref_log_prob[i] 越高,ref越认可actor的输出,说明输出更守规矩,因此应该获得更高的奖励

  • old_log_prob[i] 越高,actor获得的奖励反而更低。old_log_prob[i] 作为正则项,可以保证概率分布的多样性

  • 我们只在最后一个token上应用结果正确性奖励(reward_model的输出),加上score分数

通俗来说,整个reward的计算逻辑是典型的霸总逻辑:除非你能拿到好的结果(整句话高分),否则你就得给我守规矩(符合SFT的token分布)。

对于语言模型而言,生成第i个token的实际收益就是:从生成第i个token开始到生成第N个token为止,所能获得的所有奖励的总和。我们用return来表示实际收益,它的计算方式如下:

在算出实际收益与预期收益后,要做的就是强化优势动作:

在语言模型中,根据上下文生成一个 token 就是所谓的“动作”。强化优势动作表示:如果在上下文(context)中生成了某个 token,并且这个动作的优势很高,那么我们应该增加生成该 token 的概率,即增加 p(token|context)的值。

由于演员模型建模了p(token|context),所以我们可以给演员模型设计一个损失函数,通过优化损失函数来实现“强化优势动作”:

其中:

  • 当优势大于 0 时,概率越大,loss 越小;因此优化器会通过增大概率(即强化优势动作)来减小 loss

  • 当优势小于 0 时,概率越小,loss 越小;因此优化器会通过减小概率(即弱化劣势动作)来减小 loss

实际使用时会采用如上公式,使用的是本次参数更新前的Actor模型。直观来说,当生成某个 token 的概率已经很大了的时候,即便这个动作的优势很大,也不要再使劲增大概率了。或者更通俗地说,就是步子不要迈得太大。

第四步(7号)

前面我们提到过,评论家会为 response 中的每个 token 计算一个预期收益,第 i个预期收益记为 values[i],因为Critic不准,所以使用损失函数MSE来衡量评论家预期收益和真实收益之间的差距,在提升Actor的同时升级Critic:

第五部(8号)

最终优化时用的 loss 是演员和评论家损失函数的加权和:

以上就是大模型训练的设计思路及流程。

4 个人理解

大模型在训练过程中损失函数的设计,主要就是为了使模型达到分布合理与分高的双重目的:

  1. 在分布合理方面:使用ref_log_prob-old_log_prob进行模拟,同时对大模型正经的胡说八道进行纠正,避免模型回答一个与答案不符但奖励是高分的答案

  2. 模型希望答案的分值越高越好

若对模型进行优化,我认为可以加大答案符合原先回答分布概率的权重来进一步优化“幻觉”问题。

5 DPO模型训练方法

RLHF通常包含三个步骤:SFTReward ModelPPO。该方案优点不需多说,缺点也很明显:训练流程繁琐、算法复杂、超参数多和计算量大,因此RLHF替代方案层出不穷。

DPO(Direct Preference Optimization,直接优化策略)是一种非常高效的RLHF算法。它巧妙地绕过了构建奖励模型和强化学习这两个的繁琐过程,直接通过偏好数据进行微调,效果简单粗暴,在使模型输出更符合人类偏好的同时,极大地缩短了训练时间和难度。

DPO需要的数据与RLHF一致,都是经过人工排序后的QA语料对。主要不同就是损失函数的设计:

其中:

  • 是偏好数据对中好的回答 (chosen),则是偏好数据对中坏的回答(rejected)

  • 是当给定输入为x时,当前策略生成好的答案的概率

  • 是当给定输入为x时,原始(reference)策略生成好的答案的概率

  • 当函数里面的部分越大时,整体的 loss 就越小,所以对于 DPO 的 loss,我们只需要将函数里面的部分最大化即可。再简化一下上述的 loss, 只提取函数里面的部分, 我们可以得到:

由此可以看出,其实 DPO 期望最大化的就是奖励模型对chosen数据和rejected数据的差值,从而来达到使模型的回答更偏向于人类排序靠前回答的目标。

直接策略优化(DPO)算法巧妙地将reward model和强化学习两个步骤合并,使得训练更加的快速高效,在它的训练过程中Reference参数固定,只对目标语言模型进行参数更新,调试更加简单。

在上述DPO推导结果中看似非常完美,但实际使用过程中与PPO优化算法仍有差距,我认为主要是因为DPO的训练目标会导致过拟合, 在下式中的优化策略为零,那么就可以使得偏好概率变的很大,整体的损失很小。

令,那么,损失就能一下降低下来, 直觉的理解是模型随便胡说的情况下就能使得Loss降低,给了钻空子的空间,没有像PPO损失函数考虑了结果整体的分值,因为PPO的要求是如果除非你能拿到好的结果(整句话高分),否则你就得给我守规矩(结果合理分布)。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 5
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值