去年在GitHub上标星了一款超实用的开源AI宝箱,名叫Pinokio,特别对于编程小白来说,是真的友好,当时看见了这个项目就觉得特别Nice,但由于忙着其他事情就标星收藏了,准备之后体验分享一番!
后来你们都懂得,忙的啥也不记得了!今天我在浏览我以往标星项目时就想起来了,所以特别写这篇文章分享一下!
首先它一直在更新维护中,最近一次更新时4天前!在GitHub上已经揽获了将近 3k Star!
Pinokio整合了几乎所有市面上开源的 AI 工具,不管是大语言模型、AI 绘画、AI语音、AI 视频,还是AI 音乐等其他相关的AI工具,全部都可以在这里找到。
而这款工具,它最大的亮点就是这些 AI 应用都可以傻瓜式地一键安装。这也是为什么我说Pinokio是编程小白的福音,无需懂编程,无需会代码,只要会电脑就行。
哪怕对于编程大佬也是可以入手的一款工具,以前我们在本地部署开源AI工具,我们需要按步骤一步步克隆项目、安装/解决依赖、运行调试,特别繁琐,如今只需要一键安装即可。
AI应用一键安装
说实话,作为一个程序员,我在第一次听到“一键安装”这个概念时,真的是抱着怀疑的态度。
毕竟,以前安装 Stable Diffusion、ComfyUI、TTS 等AI应用时,我可是吃尽了苦头。**各种环境配置、命令行操作,还有那无穷无尽的报错信息,简直让人头疼。**但 Pinokio 彻底改变了我的看法。
记得第一次尝试安装 Stable Diffusion Web UI 时,即便按照官方文档一步步操作,依旧避免不了各种莫名其妙的错误。毕竟我是在Mac上用的,不像Windows有秋叶大佬那样的大神给封装好启动器,一键就可运行。
那段时间,我真的想把电脑砸了。安装好了也还时不时出些小毛病!
Pinokio支持全平台(除了移动端):Windows、Mac、Linux
下载可直接前往GitHub项目下,如网络条件差的朋友,小编也在文末提供下载好的资源!
如何安装Pinokio
官网:https://pinokio.computer/
GitHub:https://github.com/pinokiocomputer/pinokio
安装途径一:官网直接下载
点击“Download”
选择你电脑对应的系统安装包即可。
安装途径二:GitHub Release页面下载
安装包下载到本地后,就可以双击进行安装了(我是在Mac电脑上进行的)
Tips:如果Mac上安装完成后,打开Pinokio时提示“文件已损坏,您应该将它移到废纸篓”,请执行以下命令即可解决: xattr -rd com.apple.quarantine /Applications/Pinokio.app
Pinokio界面功能介绍
首次进行Pinokio会显示如下设置界面,需要设置Pinokio的Home目录,也就是之后安装AI工具时存储的主目录,所有安装的AI工具都会在此目录下,然后设置Pinokio的主题(暗黑和亮白)按照自己习惯就行。
保存后会进入到Pinokio应用主界面,然后点击“Visit Discover Page”
这样就进入到一个类似于应用市场的界面,可以安装脚本库中有的开源AI工具。
“Community Script”顾名思义为社区脚本工具,指的是pinokio内需的脚本工具
“Download from URL”自定义开源AI工具安装,只要是GitHub上有的,其实都可以复制github链接进行一键式安装。
Pinokio 一键式安装AI应用
接下来就拿 IDM-VTON 这个开源换装项目,做一个演示说明。直接点击Download下载。
会出现如下环境依赖安装界面,比如:Python虚拟环境管理应用conda、git拉取代码、zip解压用的等等。(有一点觉得不好,不支持自定义软件路径,像conda/git/zip/py/brew其实会编程的基本上自己电脑都会安装过,无需再安装新的)
我们直接点击Install安装,等待下载完成
直到7个安装依赖都安装完成后,提示Install Complete!说明所有依赖安装完成!
此时会弹出一个弹窗,让你继续安装AI应用,在我这里也就是安装IDM-VTON项目
由于是测试给大家看的,安装时间比较久,所以结果就不在这里展示了,如果想安装其他项目的小伙伴照此流程即可。
安装完成后的项目会在主界面显示,直接Star启动项目就行了。
还有一个功能,Pinokio可以开启一个本地HTTP服务,就跟客户端界面一样,在浏览器上一样可以执行所有的操作。
所以,测验用了下 Pinokio,安装AI工具简直就像喝水一样简单。一键安装,自动搞定所有配置。
(但是还是可能因为网络原因,安装失败!再就是安装的项目对显卡有特别的最低要求,所以请根据电脑配置选择是否安装相应的AI应用)
相信编程小白,使用后的那种感觉,就像是解锁了新技能,会特别有成就感。
最后,附上 Windows 和 Mac 版本的安装包,大家按需提取就好。
安装包:
https://pan.quark.cn/s/88915b5bedf8
https://pan.baidu.com/s/1awVmA4nn8cWUEAGkj5qvGA?pwd=eym4
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。