RAG系统进阶:query rewrite高手必备的三大技巧,附代码实现

一个好的RAG系统需要一个好的检索模块,而一个好的检索模块需要一个好的query理解模块。这个博客,主要介绍3个常见的query改写方式。

Sub-Question

示例图:

流程:

  1. 子问题策略使用 LLM 根据用户查询生成多个子问题。

  2. 然后,每个子问题经过RAG过程以获得自己的答案(检索生成)。

  3. 最后,将所有子问题的答案进行合并,得到最终的答案。

代码示例

    ##  默认流程   from llama_index.core import VectorStoreIndex, SimpleDirectoryReader      question = "Harley Quinn和Thanos 是复仇者联盟中的正义人物吗?"   documents = SimpleDirectoryReader("./data").load_data()   node_parser = VectorStoreIndex.from_documents(documents)   query_engine = node_parser.as_query_engine()   response = query_engine.query(question)   print(f"base query result: {response}")      # Output   base query result: 不,Harley Quinn和Thano在《复仇者联盟》系列中并没有被描绘成正义的人物。         ## Sub-Question   from llama_index.core.tools import QueryEngineTool, ToolMetadata   from llama_index.core.query_engine import SubQuestionQueryEngine      query_engine_tools = [       QueryEngineTool(           query_engine=query_engine,           metadata=ToolMetadata(               name="Avengers",               description="漫威电影《复仇者联盟》",           ),       ),   ]   query_engine = SubQuestionQueryEngine.from_defaults(       query_engine_tools=query_engine_tools   )   response = query_engine.query(question)   print(f"sub question query result: {response}")      # Output   Generated 2 sub questions.   [Avengers] Q: Harley Quinn 在复仇者联盟电影中扮演什么角色?   [Avengers] Q: Thanos play 在复仇者联盟电影中扮演什么角色?   [Avengers] A: 在《复仇者联盟》电影的背景介绍中,并没有提到Harley Quinn。   [Avengers] A: Thanos是《复仇者联盟》电影中的主要反派。他是一位强大的军阀,试图按照自己的设想重塑宇宙。Thanos被描绘成一个强大而无情的敌人,对复仇者联盟和整个宇宙构成了重大威胁。   sub question query result: 复仇者联盟电影的背景中并未提及Harley Quinn。Thanos是复仇者联盟电影的主要反派,被描绘成一个强大而无情的敌人。    

HyDE

示例图:

原理:

HyDE(Hypothetical Document Embeddings)的本质是利用LLM生成假设文档。这些文档是根据 LLM 本身的知识生成的,可能包含错误或不准确之处。但是,它们与 RAG 知识库中的文档相关联。然后,利用这些假设文档来检索具有相似向量的真实文档,提高检索的准确性。

代码示例:

from llama_index.core.indices.query.query_transform import HyDEQueryTransform      question = "Loki为了征服地球使用了什么神秘物品?"   hyde = HyDEQueryTransform(include_original=True)   query_bundle = hyde(question)   print(f"query_bundle embedding len: {len(query_bundle.embedding_strs)}")   for idx, embedding in enumerate(query_bundle.embedding_strs):       print(f"embedding {idx}: {embedding[:100]}")      # Display result   query_bundle embedding len: 2   embedding 0: Loki 利用宇宙立方(又称宇宙魔方)试图征服地球。这个神秘的...   embedding 1: Loki 为了征服地球使用了什么神秘物品?      from llama_index.core.query_engine import TransformQueryEngine      hyde_query_engine = TransformQueryEngine(query_engine, hyde)   response = hyde_query_engine.query(question)   print(f"hyde query result: {response}")      # Display result   hyde query result: Loki 曾试图利用宇宙立方征服地球。这件强大的神器也被称为...      

注:HyDE 生成的假设文档基于 LLM 的知识,可能包含错误或不准确之处。HyDE 可能会误导查询并引入偏差,因此在实际应用中使用时应谨慎。

Step-Back Prompting

示例图

步骤

Step-Back Prompting是一种引导LLM通过从用户查询中提取高级概念和基本原理,并用这些概念和原理来指导推理的方法。可以显着提高LLM遵循正确推理路径解决问题的能力。

以上图中的第一个问题为例,原来的问题是求给定温度和体积的压力。左边的答案中,无论是原来的答案还是思路链的答案,结果都是错误的。然而,通过后退提示,首先在原始问题的基础上生成更广泛的问题,例如寻求问题背后的底层物理公式。然后,从更广泛的问题中获得答案,最后将更广泛的问题的答案和原始问题一起提交给LLM,从而获得正确的答案。

代码示例:

from llama_index.core import PromptTemplate   from openai import OpenAI      client = OpenAI()   examples = [           {               "input": "1968 年至 1974 年期间安娜·卡琳娜的配偶是谁?",               "output": "安娜·卡琳娜的配偶是谁?",           },           {               "input": "1954 年 8 月至 1954 年 11 月期间,埃斯特拉·利奥波德 (Estella Leopold) 就读于哪所学校?",               "output": "埃斯特拉·利奥波德 (Estella Leopold) 的教育历史是怎样的?",           },       ]       few_shot_examples = "\n\n".join(           [f"human: {example['input']}\nAI: {example['output']}" for example in examples]       )       step_back_question_system_prompt = PromptTemplate(           "你是世界知识方面的专家。"   "你的任务是退一步,将问题解释为更通用的退一步问题,"   "这更容易回答。以下是几个例子:\n"           "{few_shot_examples}"       )       completion = client.chat.completions.create(           model="gpt-3.5-turbo",           temperature=0.1,           messages=[               {                   "role": "system",                   "content": step_back_question_system_prompt.format(                       few_shot_examples=few_shot_examples                   ),               },               {"role": "user", "content": question},           ],       )       step_back_question = completion.choices[0].message.content       print(f"step_back_question: {step_back_question}")          retrievals = retriever.retrieve(question)   normal_context = "\n\n".join([f"{n.text}" for n in retrievals])   retrievals = retriever.retrieve(step_back_question)   step_back_context = "\n\n".join([f"{n.text}" for n in retrievals])         step_back_qa_prompt_template = PromptTemplate(           "Context information is below.\n"           "---------------------\n"           "{normal_context}\n"           "{step_back_context}\n"           "---------------------\n"           "Given the context information and not prior knowledge, "           "answer the question: {question}\n"       )      completion = client.chat.completions.create(           model="gpt-3.5-turbo",           temperature=0.1,           messages=[               {                   "role": "system",                   "content": "一定要回答问题,即使上下文没有帮助。",               },               {                   "role": "user",                   "content": step_back_qa_prompt_template.format(                       normal_context=normal_context,                       step_back_context=step_back_context,                       question=question,                   ),               },           ],       )       step_back_result = completion.choices[0].message.content       print(f"step_back_result: {step_back_result}")          question: 泰坦星上发生过一场大战吗?   base result: 不,泰坦星上没有发生过大规模战争。泰坦星上没有发生过任何重大冲突或战争。   ====================================================================================================   step back question: 泰坦星上发生过什么重大事件吗?   step back result: 是的,在漫威电影宇宙中,泰坦星上发生过一场重大冲突。在《复仇者联盟:无限战争》中,泰坦星被描绘成灭霸被摧毁的家园,泰坦星上的战斗涉及一群英雄,包括钢铁侠(托尼·斯塔克)、蜘蛛侠(彼得·帕克)、奇异博士(史蒂芬·斯特兰奇)和银河护卫队,他们试图阻止灭霸实现他的目标。   

可以看到,没有Step-Back Prompting的结果是不正确的,但是使用Step-Back Prompting后,我们根据知识库文档得到了正确的答案。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 2
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值