【RAG 论文】引入 query rewriter 来做查询重写实现对 RAG 的改进

论文介绍了一种改进RAG模型的方法,通过在查询输入retriever前添加queryrewrite步骤,使用不可训练的LLM或可训练的LM。实验表明这种方法能提高效果。然而,研究仍面临下游任务的泛化与专业化的权衡以及训练效率的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

论文:Query Rewriting in Retrieval-Augmented Large Language Models
⭐⭐⭐⭐
EMNLP 2023
Code: github.com/xbmxb/RAG-query-rewriting

一、论文速读

如下是一个常见的 RAG pipeline:

RAG pipeline

但这存在一个缺点:input text 和需要 query 的 knowledge 之间不可避免地会存在一个 gap

本文提出:在将 query 输入给 retriever 之前,增加一个 query rewrite 步骤来弥补这个 gap

增加 query rewrite

这样,就把之前 RAG 的 retrieve-then-read 改为了 Rewrite-Retrieve-Read 的框架。

同时&#

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值