大模型的发展正在引发一场智能革命,其强大的能力为各行各业带来了新的机遇和挑战。行业大模型作为人工智能与行业深度融合的关键,具有重要的意义。正如《行业大模型调研报告》中所指出的,行业大模型大多生长于通用大模型之上,通过对通用大模型进行调整和优化,使其能够更好地适应特定行业的需求。它不仅是一个模型,更是包含了针对特定数据和任务的训练或优化,以及相应的应用。
在应用方面,不同行业对大模型的需求和应用场景各不相同。例如,数字原生行业率先应用大模型,生产性服务业则为其他传统行业提供了示范。大模型在行业中的应用呈现出“微笑曲线”特征,在研发/设计和营销/服务环节表现出色,而在生产/制造环节相对较慢。然而,不同行业对大模型的能力有着共同的需求,如内容生成与创意设计、信息提炼与专业辅助、任务调度与智能交互等。
为了推动行业大模型的成功应用,我们需要避免将技术指标当作唯一的成功标准,避免过度看重短期收益而忽视长期投入。同时,要评估大模型在降本提效、业务创新和体验增强等方面的价值,并构建高质量数据飞轮模式,以确保大模型能够充分发挥其作用,为行业带来实际的效益。总之,行业大模型的发展需要各方共同努力,以实现其在推动行业发展和创新方面的潜力。
大模型的出现引发了智能革命,其参数规模大、泛化能力强、支持多模态等特点,使其能够学习多个领域知识、处理多种任务,展现出类人的通用智能“涌现”能力。然而,大模型存在“不可能三角”问题,即在专业性、泛化性和经济性三方面很难兼得。为了满足行业的内生需求,解决通用大模型与行业具体需求间的差距,行业大模型应运而生。
行业大模型具有一些独特的特点。它既有模型,也含应用,不仅指开发一个行业专用的模型本身,还包括基于通用大模型调整和开发的行业应用。大多生长于通用大模型之上,通过对通用大模型进行提示工程、检索增强生成、精调、继续预训练/后训练等方式,生成具备专用知识与能力的大模型及应用。其本质是解决方案,需要针对特定数据和任务进行定制开发或调整,以满足B端客户的个性化需求。
在应用进展方面,不同行业应用大模型技术的进度各异。数字原生行业是大模型应用的先行者,生产性服务业成为传统行业结合大模型的示范区,重资产行业在大模型的应用上处于局部探索阶段。大模型在垂直场景的应用渗透呈现“微笑曲线”特征,在产业链高附加价值的两端(研发/设计和营销/服务)应用落地较快,而在低附加价值的中部(生产、组装等)应用进程较慢。不同行业对大模型能力有“三大共性需求”,包括内容生成与创意设计、信息提炼与专业辅助、任务调度与智能交互。
衡量行业大模型应用成功的关键在于避免两个误区,即片面追求技术性能或短期收益,同时评估三类价值,包括降本提效、业务创新和体验增强,并构建一个高质量数据飞轮的模式。高质量的数据环境对于行业大模型的构建至关重要,数据质量比数量更为重要,需要应用相关、能提供上下文理解的数据,并重点投资于持续标记、组织和监控这些数据。
在实现方式上,行业大模型的构建和应用中,从易到难主要有提示工程、检索增强生成、精调、预训练四类方式。通常会组合使用这些方式,以实现最佳效果。例如,金融大模型通过预训练、SFT和RLHF等方式,在股票投资服务场景中实现了效率和质量的双提升。科研案例scBERT单细胞基因数据分析大模型则通过预训练和精调,为生命科学和精准医疗领域提供了高质量的AI辅助分析方法。
安全与治理是行业大模型发展的重要保障。行业大模型治理应遵循可信可控、数据安全与知识产权保护、顶层设计与行业协同三项原则。价值对齐是行业大模型可信应用的基础保障,需要确保大模型的行为和目的与人类的价值、偏好、伦理原则、真实意图之间实现协调一致。行业大模型更需重视全生命周期的安全保障机制,包括内生安全及应用安全。AI沙盒在行业中有较成熟探索,可成为实现监管目标的可行方案。合成数据有望为行业大模型增加数据来源,行业大模型是走向AI绿色可持续发展的路径之一。
未来,“人工智能+”将促进行业大模型应用提速,国家将加大力度推进通用大模型和行业大模型应用,引导更多行业领域开放应用场景。多模态大模型为数实融合打开新空间,有望驱动各行业落地加速。AI Agent有望为各行业注入生产力,成为各行各业不可或缺的新型生产力。行业大模型将出现更多的端侧形态,手机和汽车行业有望优先落地端侧大模型技术。云智能一体将支持行业大模型加速落地,云计算提供的强大基础设施、灵活资源管理和全面服务支持将加快行业大模型的落地进程。
行业大模型是推动人工智能与行业深度融合的关键力量,它将为各行业带来深刻的变革和创新。然而,行业大模型的发展仍面临诸多挑战,需要政府、企业、学术界和科研机构等各方共同努力,加强合作,推动行业大模型的健康发展,为经济社会发展注入新的动力。相信在各方的共同努力下,行业大模型将在未来发挥更加重要的作用,实现人工智能与行业的深度融合,助力我国经济实现高质量发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。