什么是AI(Agent)智能体

智能体介绍

智能体(Agent)是人工智能(AI)和计算机科学中的一个核心概念,它指的是能够在特定环境中自主执行任务或作出决策的实体。智能体可以是软件形式,如聊天机器人、推荐系统、游戏中的角色等;也可以是硬件形式,如自动驾驶汽车、服务机器人等。以下是智能体的几个关键特点:

  1. 自主性(Autonomy): 智能体能够在没有直接外部干预的情况下控制其自身行为和内部状态。它们可以独立地操作,并对自己的行为做出决策。

  2. 社会能力(Social Ability): 智能体能够与其他智能体(包括人类)交互和沟通。它们可以理解其他智能体的意图,并在多智能体系统中协同工作。

  3. 反应性(Reactivity): 智能体能够感知其环境并对环境变化做出快速反应。它们可以根据传感器输入或外部事件来调整自己的行为。

  4. 主动性(Pro-activeness): 智能体不仅能够响应环境,还能够主动采取行动以实现其设计目标。这意味着智能体能够预测未来事件并采取预防措施。

  5. 智能性(Intelligence): 智能体能够使用人工智能技术,如机器学习、自然语言处理、计算机视觉等,来提高其决策和问题解决的能力。

智能体的应用非常广泛,包括但不限于:

  • 个人助理

    :如智能手机上的语音助手,可以帮助用户设置提醒、搜索信息等。

  • 客户服务

    :在线客服机器人,可以自动回答用户的常见问题。

  • 智能家居

    :控制家庭设备的智能系统,如智能恒温器、智能灯泡等。

  • 工业自动化

    :在生产线上执行特定任务的机器人。

  • 医疗辅助

    :辅助医生进行诊断和治疗的智能系统。

  • 金融服务

    :进行交易、风险评估和欺诈检测的智能算法。

智能体的发展是人工智能领域的一个重要方向,它们正在变得越来越复杂和智能,能够在各种环境中执行越来越复杂的任务。

智能体框架

智能体框架是构建智能体系统的关键技术,它们提供了开发、部署和运行智能体的基础设施和工具。以下是一些主流的智能体框架及其特点

单智能体框架

  1. BabyAGI
  • 简介:作为早期agent的实践,babyagi框架简单实用,里面的任务优先级排序模块是一个比较独特的feature。

  • Git仓库地址:https://github.com/yoheinakajima/babyagi

多智能体框架

  1. AutoGen(微软)
  • 简介:AutoGen由微软推出,包含用户智能体和助手智能体两个核心角色。用户智能体负责提出编程需求或编写提示词,助手智能体则负责生成和执行代码。该框架擅长于代码任务的多智能体编排,同时也具备处理其他类型任务的能力。

  • Git仓库地址:https://github.com/microsoft/autogen

  1. CrewAI
  • 简介:CrewAI是一个直观、易于配置的工具,用于快速搭建Multi-AI Agent任务演示。它允许创建新智能体并将其融入系统,操作简单,即使是非技术背景的用户也能轻松上手。

  • Git仓库地址:https://github.com/crewAIInc/crewAI

  1. LangGraph
  • 简介:用于构建具有状态和多角色应用程序的库,主要用于创建智能体和多智能体工作流。

  • Git仓库地址:https://github.com/langchain-ai/langgraph

  1. Magentic-One
  • 简介:微软推出的高性能通用智能体系统,采用多智能体架构。

  • Git仓库地址:https://github.com/microsoft/autogen/tree/main/python/packages/autogen-magentic-one

  1. MetaGPT
  • 简介:以一行需求作为输入,输出用户故事/竞争分析/需求/数据结构/API/文档等。MetaGPT是一个创新框架,它将人类工作流程作为元编程方法整合到基于LLM的多智能体协作中。该框架使用标准化操作程序(SOP)编码为提示,要求模块化输出,以增强代理的领域专业知识并减少错误。实验表明,MetaGPT在协作软件工程基准上生成了更连贯和正确的解决方案,展示了将人类知识整合进多智能体系统的潜力。

  • Git仓库地址:https://github.com/geekan/MetaGPT

  1. AgentScope
  • 简介:阿里开源的Multi-agent框架,支持分布式框架,并且做了工程链路上的优化及监控。

  • Git仓库地址:https://github.com/modelscope/agentscope

  1. 斯坦福虚拟小镇
  • 简介:虚拟小镇作为早期的multi-agent项目,很多设计也影响到了其他multi-agent框架,里面的反思和记忆检索feature比较有意思,模拟人类的思考方式。

  • Git地址:https://github.com/joonspk-research/generative_agents

这些框架代表了智能体技术的不同方向和应用,从软件开发到工作流自动化,再到多智能体协作,它们为智能体的开发和应用提供了强大的支持。开发者可以根据自己的需求选择合适的框架来构建特定的智能体应用。

总结

Agent的核心逻辑是让LLM根据动态变化的环境信息,选择执行具体的行动,并反过来影响环境,通过多轮迭代重复执行上述步骤,直到完成目标。总结就是:感知§ — 规划§ — 行动(A),智能体在工程实现上可以拆分出四大块核心模块:推理、记忆、工具、行动

单智能体= 大语言模型(LLM) + 观察(obs) + 思考(thought) + 行动(act) + 记忆(mem)

多智能体=智能体 + 环境 + SOP + 评审 + 通信 + 成本

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>嗯,我现在需要向用户介绍AI Agent智能体)。首先,我应该明确AI Agent的定义和核心特征。用户可能对这个概念不太熟悉,所以得从基础讲起。AI Agent是什么?它是一个能够感知环境、自主决策并执行动作的智能实体。然后,我需要分点说明它的特点,比如自主性、反应性、目标导向、学习能力,可能还有社交性。每个特点需要简单解释,让用户容易理解。 接下来,用户可能想知道AI Agent的应用场景。这时候我要举一些实际的例子,比如虚拟助手、自动驾驶、游戏AI、客服系统、医疗诊断和金融交易。每个应用场景需要简短说明,突出AI Agent在不同领域的作用。 然后,技术架构部分也很重要。用户可能对背后的技术感兴趣,比如感知模块、决策模块、执行模块和学习模块。每个模块的功能需要解释清楚,但不用太深入技术细节,保持易懂。 用户可能还会关心AI Agent的挑战,比如复杂环境处理、伦理问题和计算资源。这部分需要客观指出当前存在的问题,帮助用户全面了解。 最后,展望未来发展方向,比如多模态交互、人机协作、通用人工智能和伦理规范。这部分要让用户看到AI Agent的潜力和未来趋势。 在写作过程中,要确保结构清晰,分点列出,避免使用专业术语过多,用中文口语化表达。同时,注意数学公式的正确格式,但用户问题中没有涉及数学内容,所以可能不需要用到。检查是否符合之前的系统级指令,比如使用中文,结构清晰,分步骤解答。确保回答真实可靠,信息准确。 现在需要整理这些思路,按照逻辑顺序组织内容,从定义到特点,再到应用、技术架构、挑战和未来展望。每个部分用标题和列表项分开,方便阅读。保持语言简洁,避免冗长,同时覆盖关键点。检查是否有遗漏的重要信息,比如是否提到了学习能力中的强化学习或迁移学习,是否需要更具体的例子。确保每个段落不要太长,适当换行,使回答易于浏览。</think>### AI Agent智能体)介绍 #### 1. **定义与核心特征** **AI Agent** 是一种能够感知环境、自主决策并执行动作的智能实体,其核心特征包括: - **自主性**:无需人类干预,独立运行(例如:自动驾驶汽车实时判断路况)。 - **反应性**:动态响应环境变化(例如:聊天机器人根据用户输入调整回答)。 - **目标导向**:为实现特定目标而行动(例如:物流机器人规划最优路径送货)。 - **学习能力**:通过数据或交互提升性能(例如:推荐系统学习用户偏好)。 - **社交性**(可选):与其他Agent或人类协作(例如:多机器人协同搬运)。 --- #### 2. **典型应用场景** - **虚拟助手**:Siri、小爱同学等处理日常任务。 - **自动驾驶**:特斯拉Autopilot综合感知与决策。 - **游戏AI**:AlphaGo、Dota 2的OpenAI Five实现复杂策略。 - **智能客服**:银行客服Agent自动解答常见问题。 - **医疗诊断**:IBM Watson分析病例并提供建议。 - **金融交易**:高频交易Agent实时捕捉市场信号。 --- #### 3. **技术架构** AI Agent通常包含以下模块: 1. **感知模块** - 输入:传感器、文本、图像等多模态数据。 - 技术:计算机视觉(CV)、自然语言处理(NLP)。 2. **决策模块** - 方法:规则引擎、机器学习模型(如深度强化学习)。 - 输出:生成行动策略(例如:机器人选择避障路径)。 3. **执行模块** - 动作:物理操作(机械臂抓取)或数字操作(发送消息)。 4. **学习与优化模块** - 机制:在线学习(实时更新)、迁移学习(跨任务复用知识)。 --- #### 4. **关键挑战** - **复杂环境适应**:噪声、不确定性干扰决策(如嘈杂环境下的语音识别)。 - **伦理与安全**:自动驾驶的“电车难题”、隐私泄露风险。 - **资源限制**:嵌入式设备需平衡计算效率与模型精度。 --- #### 5. **未来发展方向** - **多模态交互**:融合视觉、语音、触觉等多维度感知。 - **人机协作**:Agent理解人类意图并辅助决策(如手术机器人配合医生)。 - **通用人工智能(AGI)**:单一Agent跨领域执行多样化任务。 - **伦理规范**:建立透明、可解释的决策机制。 --- ### 总结 AI Agent作为人工智能的具象化载体,正在从单一任务向通用化、社会化演进。其核心价值在于**延伸人类能力**(如处理海量数据)与**替代高风险操作**(如深海勘探),未来或将成为数字经济的重要基础设施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值