DeepSeek终究还是没有扛住,越来越“难用”了:连续问到第二个问题就频繁地提醒“服务器繁忙,请稍后再试”,刷新也救不回来。
我又不死心的去检查了一遍DeepSeek的状态页面,不出意外的一片大红。
全网都在寻找DeepSeek官方的平替,其中硅基流动(SiliconCloud) 是比较推荐的一个。模型种类多,简单易上手,最近专门和华为云昇腾云合作,推出了部署在华为云上的DeepSeek-R1
和DeepSeek-V3
,注册还能免费送14元平台余额。
话接上文,有了硅基流动提供的DeepSeek-R1
API,我们能做的事就多了。
比如今天要讲的:DeepSeek-R1
+ 个人知识库打造。
除了硅基流动,还要用到另一个圈内比较火的第三方客户端:Cherry Studio。
1. 下载安装 Cherry Studio
https://cherry-ai.com/
作为一个完全开源的项目,除去UI设计、功能不谈,Cherry Studio很值得推荐的一点是作者(@kangfenmao)活跃在各大平台、论坛,积极听取用户反馈的同时,更新相当及时。
2. 模型配置
安装好Cherry Studio后,首先需要配置模型。搭建个人知识库,仅硅基流动的模型就足够了,所以只需:点击左下角的设置
->选择硅基流动
->打开开关->填入硅基流动的API key。
接下来,把需要用到的模型添加上。下拉到最下面,点击绿色的管理
按钮。
常规模型中,推荐添加下面三个模型:推理模型DeepSeek-R1
、通用模型DeepSeek-V3
,以及视觉模型Janus-Pro-7B
。
嵌入(embedding)模型,推荐添加下面两个:完全免费的BAAI/bge-m3
和付费的Pro/BAAI/bge-m3
。
一般说来,免费的BAAI/bge-m3
模型就够用。
3. 创建知识库
配置完模型,就可以开始创建知识库了!
点击左侧菜单栏的知识库
图标->点击左上角的添加
按钮->在弹窗里输入你的知识库名称,随便输,方便查找就行->选择嵌入模型
。
嵌入模型选择上一步中添加的免费模型BAAI/bge-m3
就可以。
接下来就可以往你创建好的知识库里添加资料,Cherry Studio支持各种类型的资料,比如文件、网址、笔记等等。
以最常见的文件资料为例,直接把PDF拖拽进去,当看到文件右边的状态符号变为绿色的对勾,就说明该文件已经向量化完毕。
4. 和知识库对话
添加完资料,就可以开始检索你的个人知识库了。
两种方式使用。
一种是直接在知识库最下面的搜索知识库
,点击后进行搜索。
输入你想搜索的内容,点击搜索
按钮。就像下面这样。
第二种方法则更为实用:直接在问答的过程中选中知识库,相当于给LLM添加了额外的上下文信息。
在Cherry Studio的输入框下方,有一个知识库的图标,点击,选择你创建好的知识库。
选中后,知识库的图标会变成蓝色。
这里我默认的模型是DeepSeek-R1
。回答前,会先对知识库进行检索,然后把搜索结果投喂给DeepSeek-R1
,由模型进行整理、分析,再生成最终的答案。
可以看到,DeepSeek-R1
的回答结果是基于知识库内容产生的。
附上DeepSeek-R1
的思考过程,一如既往的给力。
近期,由于大量用户涌入硅基流动使用DeepSeek模型,导致硅基的DeepSeek-R1
调用可能卡顿,并且思考时间有时离谱的长。所以,上车要趁早啊。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。