找工作是一件让人头疼的事,尤其是对那些寻找远程工作机会的人来说。市面上充斥着各种招聘网站,但大多数都乱七八糟,不是重复的职位,就是缺乏透明度。我和很多人一样,对Indeed和LinkedIn这些传统的招聘平台已经失望透顶。
有一个外国小哥,让这种失望成为了他创业的动力,最终让他踏上了开发AI驱动的远程工作搜索引擎的道路,如今它已经收录了超过30万个职位。这篇文章就来讲讲他是怎么折腾出这么个东西的。
如果你只对工作平台有兴趣,直达电梯here:https://hiring.cafe
被传统招聘平台折磨到怀疑人生
故事的开头很简单,我就是个找工作的小白,每天被这些所谓的主流招聘网站折磨得怀疑人生。像Indeed和LinkedIn这种平台,简直就是信息的垃圾场,里面塞满了无关紧要的职位广告,简直像在找工作里捡垃圾。每次打开这些平台,我都觉得自己像在大海捞针,效率低得想砸电脑。
有一天,我突然想通了:何必自讨苦吃?于是我决定直接到公司官网上申请工作。虽然这确实绕开了那些乱七八糟的广告和无用信息,但问题是,去每个公司网站上找工作,费时费力,还不一定有结果。于是我开始琢磨,能不能搞个更聪明的工具,直接为那些和我一样的远程工作者服务?
一个“不作死就不会死”的想法
这个想法就是HiringCafe的雏形——当然,那时候我还没起这个名字。我想,既然可以直接从公司网站上抓取职位信息,那就完全可以绕开那些垃圾招聘网站了!但光是抓取职位信息还不够,我还得提取出关键的信息,比如薪资、职位要求等等,保证数据准确,信息更新及时。
于是我撸起袖子,开始动手开发一个庞大的系统,这个系统可以处理这些任务,还能把它们做到极致。目标很简单:创建一个巨大的远程工作数据库,让求职者可以方便快捷地找到自己想要的职位。
搞个“大工程”
首先,我得开发一个牛逼的爬虫程序,可以从成千上万的公司网站上抓取职位信息。这可不是个小工程。这个爬虫必须足够聪明,能自动识别不同网站的结构,绕开各种反爬措施,还得只抓取有用的信息。我用了一堆工具,比如Puppeteer和Cheerio,来自动化这个过程。
搞定了数据抓取,接下来就是怎么让这些数据变得有用。这里就轮到大语言模型(LLM)登场了,比如GPT。通过把抓取到的数据输入这些模型,我可以提取出职位名称、描述、地点和薪资等关键信息。AI还帮忙过滤掉重复的职位信息,确保数据的准确性。
一路踩坑,反复折腾
搞这么个大工程,中间踩坑无数也是意料之中的。最大的问题之一就是确保爬虫程序能应付各种网站结构,不被反爬措施卡死。还有,虽然LLM很强大,但也不是完美的。有时候AI会误解数据,或者提取信息不准确。为了解决这些问题,我反复迭代了爬虫引擎,逐步提高AI解析和理解职位信息的能力。
在这个过程中,我做了一个关键的决定,就是只专注于直接雇主的职位信息,而不去碰猎头公司的职位。这么做是为了保证职位信息的质量和可信度,毕竟很多猎头公司发布的职位都是虚假或者误导性的广告,实在不值得我花时间去处理。
HiringCafe正式上线
经过几个月的开发、测试和反复优化,HiringCafe终于上线了。结果就是现在这个牛逼的职位搜索引擎,它拥有35000多家公司的职位数据库,远程工作岗位超过30万个。平台设计得非常用户友好,支持职位名称搜索、薪资过滤和保存搜索记录等功能。
最让我欣慰的是用户的正面反馈。HiringCafe的简洁和高效打动了很多求职者,他们中的不少人都对传统招聘平台感到厌倦,认为HiringCafe简直是救星。
前方路漫漫
虽然HiringCafe已经有了一个不错的开始,但这条路还很长。我会继续改进这个平台,添加新功能,扩大职位数据库。未来的一个重要优先事项是保持平台对求职者免费的同时,探索如何在不破坏用户体验的情况下实现盈利。
未来我也在考虑,如果盈利困难,可能会把这个项目开源或者转成非盈利组织(就像维基百科那样)。我的最终目标是打造互联网上最棒的职位搜索引擎,真正满足远程工作者的需求。
HiringCafe的诞生是一个充满挑战但非常值得的旅程。它从我对现有招聘平台的失望开始,最终变成了一个帮助数千人找到远程工作机会的强大工具。如果你也对传统的招聘网站感到无奈,我邀请你来试试HiringCafe。也许你梦寐以求的远程工作机会就在这里等着你。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。