随着机器学习的持续进步和医学信息数据库的日益完善,人工智能(AI)在医疗健康行业的应用日益增多。众多学者正积极研究如何利用AI技术辅助癌症诊断和进行临床预测。其中,利用AI构建临床预测模型并寻求更优的预测效果成为了一个热点研究领域。
提升预测模型的性能对于早期发现疾病变化并及时采取干预措施至关重要。在辅助开发这些预测模型的过程中,人工智能展现出了显著的优势。
最近小编发现了一篇利用AI构建预测模型的文章,觉得还不错,并且其内部验证集的AUC为0.949,两个外部验证集中的AUC为0.882和0.884,其预测准确度还是相当高的,那么我们一起来看看它是怎么构建的吧!
文章是发表在《Lancet Digital Health》上的“Artificial intelligence-based models enabling accurate diagnosis of ovarian cancer using laboratory tests in China: a multicentre, retrospective cohort study”,旨在评估常规实验室检查对预测卵巢癌的价值,并开发一个AI模型来帮助识别卵巢癌患者。
研究设计
本研究为多中心回顾性队列研究,收集了三家医院 2012 年 1 月至 2021 年 4 月期间诊断为卵巢癌和子宫附件良性病变/正常体检女性患者的 98 项 实验室检查和临床特征,基于人工智能融合方法构建了卵巢癌预测模型MCF模型。研究中,以华中科技大学同济医学院附属同济医院的患者数据作为训练数据集(TJ队列),并对其进行了五次交叉验证以评估模型的稳定性和准确性。此外,研究还从华东的浙江大学医学院附属妇产科医院(WHZJU队列)和华南的中山大学肿瘤防治中心(SYSUCC队列)收集了两个外部数据集,用于进一步验证模型的普适性和有效性。
图1 研究流程图
预测建模
在实际操作中,通过尝试错误的方式遍历所有可用的分类器来构建预测模型是不切实际的,因此相比于经验选择的分类器,需要一个有效的分类器融合框架产生更稳定和更优的预测性能。
本研究构建了MCF(多准则决策分类融合)框架,是先前工作中提出的H-MCF(基于MCF的分层预测方案)的一个变体。MCF是一种多分类器融合方案,融合了多个分类模型的预测分数。基于多准则决策分析(MCDM)理论估计了基本分类模型的融合权值。MCF旨在通过整合多个基本分类模型来提供更准确的诊断,该框架可进一步提高基于实验室检测的卵巢癌预测的性能。
在MCF中,构建了176个基本分类模型并对其进行了排名(16种特征选择方法和11种机器学习分类器的组合),其中特征选择程序将识别最重要的20个特征(前20个选定特征)输入分类器以产生基本分类模型。通过五倍交叉验证,筛选了排名最高的20个基础模型(前20个基础分类模型),并通过基于多准则决策理论估计每个模型的权重来融合它们的预测,最终得出共识分类。
预测准确性通过受试者操作特征曲线下面积(AUC)、准确性、特异性、敏感性、阳性预测值、阴性预测值和F1评分进行量化。
附录图1 MCF的构建和验证过程的图形说明
简单说一下交叉验证
交叉验证用于评估机器学习模型的性能,确保模型的泛化能力。它将数据集分成几个子集,每个子集轮流作为测试集,其余作为训练集,通过这种方式可以减少模型评估的偏差,提高模型的稳健性。以下是交叉验证的几种常见类型:
1.K折交叉验证(K-Fold Cross-Validation)
2.留一交叉验证(Leave-One-Out Cross-Validation, LOOCV)
3.留P交叉验证(Leave-P-Out Cross-Validation)
4.分层交叉验证(Stratified K-Fold Cross-Validation)
5.时间序列交叉验证(Time Series Split Cross-Validation)
交叉验证的主要优点包括:
减少偏差:通过多次训练和评估模型,减少了模型评估结果的随机性。
提高泛化能力:通过使用不同的训练集和测试集组合,可以更好地估计模型在未知数据上的表现。
有效利用数据:尤其是在数据量较少的情况下,交叉验证可以最大化数据的使用。
交叉验证的主要缺点包括:
计算成本:尤其是对于大规模数据集和复杂的模型,交叉验证可能需要更多的时间和计算资源。
结果的可重复性:由于数据的随机划分,结果可能会有所不同,除非设置固定的随机种子。
在实际应用中,选择哪种交叉验证方法取决于数据的特性、模型的复杂度以及可用的计算资源。
结果
从前20个基础分类模型中分别选择的前20个特征的统一集合在删除重复项后包含52个离散特征,这些特征作为MCF的最终输入特征,大约90%的特征与卵巢癌风险显著相关。SHAP产生了相似且一致的特征排名。单个特征的预测AUC范围从0.477到0.886。
图2 特征特性 (A) 排名靠前的特征得分。(B–F) 在内部验证集上评估每个特征的特征曲线(G) 所包含特征之间的皮尔逊相关系数。
在评估MCF的整体性能时,总结了176个基础分类模型在内部验证集上的预测性能,并对所有模型进行了排名。挑选出排名前20位的基础分类模型来构建最终的MCF模型。
附录图9 基础分类模型在内部验证集上的预测性能
MCF模型在区分卵巢癌患者和非卵巢癌患者方面表现出较高的预测效力,内部验证集的AUC为0.949。第一个外部验证集的 AUC 为 0.882(0.880–0.885),第二个外部验证集达到 0.884。
表2 MCF对卵巢癌与对照组进行分类的性能表现
并且本文将MCF与经典肿瘤标志物在卵巢癌检测中的表现进行了比较。在区分卵巢癌的所有三个验证集中, MCF的AUC、敏感性和F1分数均高于 MCFCA125、LRCA125和 LRCA125+HE4。
图3 MCF 在三个验证集中检测卵巢癌患者的表现
总结
目前利用AI构建临床预测模型已成为了一个热点研究领域:
创新的模型融合:本文创新性地提出了一个多准则决策分类融合模型,结合多个AI分类模型的预测结果,实现了对卵巢癌诊断的准确预测,优于传统的单一生物标志物检测。
严谨的模型验证:文章通过内部和外部训练集对融合后模型性能进行验证,保证了模型的可预测性和准确性,并且与经典肿瘤标志物检测进行了对比,进一步提高了模型的可信度。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。