前言
Qwen2.5-VL 是 Qwen 推出的全新旗舰视觉语言模型,较前身 Qwen2-VL 实现了重大飞跃。该模型不仅能够识别花、鸟、鱼、昆虫等常见物体,还能分析图像中的复杂文本、图表、图标、图形和布局,为多模态 AI 树立了新标准。Qwen2.5-VL 具备高度代理能力,支持动态推理和工具指导,适用于计算机和手机等多种设备。
一、技术功能与优势
- 模型概述
-
Qwen2.5-VL 是 Qwen 推出的全新旗舰视觉语言模型。
-
较前身 Qwen2-VL 有重大飞跃,树立了多模态 AI 新标准。
- 核心功能
-
物体识别:能够识别花、鸟、鱼、昆虫等常见物体。
-
复杂文本与图形分析:可分析图像中的文本、图表、图标、图形和布局。
准确率能达到80-90%,太飒了....
-
视频理解:支持超过一小时视频的理解,精确定位特定事件。
-
对象定位:通过生成边界框或点,准确定位图像中的对象。
-
结构化输出:提供稳定的 JSON 输出,支持坐标和属性。
- 行业应用
-
文档处理:支持扫描文档(如发票、表格)的结构化输出。
-
金融与商业:在金融和商业领域具有重要应用价值。
- 性能表现
-
在基准测试中表现优异,优于 Gemini 2 Flash、GPT-4o 和 Claude 3.5 Sonnet 等领先模型。
-
展现了处理多领域任务的多功能性。
二、本地部署Qwen2.5
在电脑上先安装好 Git 和 Python 环境。如果没有安装,可以自行下载安装。本文使用的是 Python 3.10.6 版本。点击下载 Python
1. 克隆 Qwen2.5-VL 仓库并进入项目目录
git clone https://github.com/QwenLM/Qwen2.5-VL cd Qwen2.5-VL
2. 安装 Web 应用程序所需的依赖项
pip install -r requirements_web_demo.txt
3. 安装支持 CUDA 的 PyTorch
为确保与 GPU 兼容,请安装支持 CUDA 的最新版本的 PyTorch、TorchVision 和 TorchAudio。即使已经安装了 PyTorch,运行 Web 应用程序时也可能会遇到问题,因此建议更新:
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu124
4. 更新 Gradio 和 Gradio Client
为避免连接和 UI 相关的错误,建议更新 Gradio 和 Gradio Client:
pip install -U gradio gradio_client
5. 下载并安装模型
以下是模型的下载安装选项,总共有 3 个选择:
较小的 3B 模型 适合 GPU 内存有限的笔记本电脑(例如 8GB VRAM):
python web_demo_mm.py --checkpoint-path "Qwen/Qwen2.5-VL-3B-Instruct"
7B 模型 显存高于 8G 的可以选择 7B 模型,性能更强、效果更好:
python web_demo_mm.py --checkpoint-path "Qwen/Qwen2.5-VL-7B-Instruct"
72B 模型 如果有专业级别的 GPU,可以直接使用 72B 的最大模型,性能最强:
python web_demo_mm.py --checkpoint-path "Qwen/Qwen2.5-VL-72B-Instruct"
安装成功会出现如下页面
6. 启动 Web 应用程序
在浏览器中打开本地链接 http://127.0.0.1:7860 即可使用。
7. 使用示例
您可以上传带有文本和多个图形的图像,并让模型对其进行解释。即使是较小的 3B 模型也表现出令人印象深刻的性能,可以识别图像中的复杂细节。
8. 替代方案
如果你的电脑硬件配置不足,无法本地部署 Qwen2.5-VL,可以直接使用官方提供的免费平台。虽然免费平台使用的是共享 GPU,并且有使用额度限制,但它的最大优势在于可以直接免费体验 Qwen2.5-VL 最强的 72B 模型!
下面是测试效果,效果不错
9. 开源模型下载路径
Qwen2.5-VL 3个完整开源版本已经托管在hugging face上,可以自行去下载
https://huggingface.co/collections/Qwen/qwen25-vl-6795ffac22b334a837c0f9a5
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。