最近在折腾 DeepSeek R1 的私有部署,发现不少开发者都遇到了类似的困扰。明明按照文档一步步来,却总是会碰到这样那样的问题 - 分片下载老是断,模型合并偶尔出错,环境配置更是让人头大。要是再遇到多机分布式、高并发或者国产芯片这些场景,那就更不好处理了。
正好最近看到一个挺有意思的开源项目 GPUStack (https://github.com/gpustack/gpustack/)。它用 Apache 协议开源,主要就是为了解决 DeepSeek R1 这类大模型的部署问题。试用下来体验还不错,分享给家人们~
-
支持 Windows、Linux、macOS,基本主流平台都能跑
-
会自动处理资源分配,多机协同计算也不在话下
-
硬件支持很全面,从 NVIDIA、AMD、Mac 到国产的昇腾、海光、摩尔线程都能用
说到底,DeepSeek R1 的部署之所以麻烦,主要还是因为它太"重"了 - 671B 的参数量即便量化后也不小。这就带来了几个实际问题:
-
单机资源往往不够用
-
量化后的模型依然很吃配置
-
不同硬件平台的算力不好统一调度
GPUStack 的思路是通过分布式推理来解决这些问题。它能自动协调多台机器的资源,让 DeepSeek R1 在各种硬件环境下都能稳定运行。
下面我们就来看看它具体是怎么工作的,以及在实际场景中该如何使用。
桌面场景
单机运行小参数量模型
在 Windows 和 macOS 桌面设备上,单机运行 DeepSeek R1 1.5B ~ 14B 等小参数模型。如果显存不足,GPUStack 也支持将部分模型权重加载到内存,实现 GPU & CPU 混合推理,确保在有限硬件资源下的运行。
resources-desktop
models-desktop
分布式推理运行大参数量模型
当单机无法满足模型运行需求时,GPUStack 支持跨主机分布式推理。例如:
多机分布式推理
- 使用一台 Mac Studio 可以运行 Unsloth 最低动态量化(1.58-bit)的 DeekSeek R1 671B 模型,更高的量化和动态量化版本可以通过分布式推理功能,使用两台 Mac Studio 分布式运行。还可以灵活多卡切分比例和满足更多的场景需求,例如更多的分布式节点和更大的上下文设置。
异构分布式推理
使用:
-
一台 Ubuntu 服务器,搭载 NVIDIA RTX 4090(24GB VRAM)
-
一台 Windows 主机,搭载 AMD Radeon RX 7800(16GB VRAM)
-
一台 MacBook Pro,搭载 M4 Pro,拥有 36GB 统一内存
聚合这些异构设备的 GPU 资源,运行单机无法运行的 DeepSeek-R1 32B 或 70B 量化蒸馏模型,充分利用多台设备的算力来提供推理。
resources-nvidia-amd-mac
models-nvidia-amd-mac
生产场景
UI 全自动多机部署超大模型
在 2 台 8 卡 NVIDIA A100 服务器上,一键开启 GPUStack 的多机分布式推理功能,通过 UI 配置全自动实现跨多机运行 DeepSeek R1 671B 量化版本,突破单机显存限制,高效执行超大规模模型推理。
resources-a100-distributed-inference
models-a100-distributed-inference
高并发高吞吐的生产部署
在需要高并发、高吞吐、低延迟的生产环境中,使用 vLLM 高效部署推理 DeepSeek R1 全量版或蒸馏版,充分利用推理加速技术支撑大规模并发请求,提升推理效率。
resources-a100-vllm
models-a100-vllm
国产硬件适配
在昇腾、海光等国产 GPU 上,GPUStack 也提供适配支持。例如,在 8 卡海光 K100_AI 上运行 DeepSeek R1 671B 量化或蒸馏版本,充分发挥国产硬件的计算能力,实现自主可控的私有化部署方案。
image-20250212215646152
image-20250212215549702
对于诸如上述的各种部署场景,GPUStack 都能根据环境自动选择最佳部署方案,提供自动化的一键部署,用户不需要繁琐的部署配置。同时用户也拥有自主控制部署的灵活性。
不同的模型、量化方式、上下文大小、推理参数设置或多卡并行配置对显存需求各不相同。对于 GGUF 模型,可以使用模型资源测算工具 GGUF Parser(https://github.com/gpustack/gguf-parser-go)来手动计算的显存需求。实际部署时,GPUStack 会自动计算并分配适合的显存资源,无需用户手动配置。
gguf-parser
GPUStack 不仅仅是 LLM 推理框架,除了 大语言模型(LLM),GPUStack 还支持多种 生成式 AI 模型,覆盖更广泛的应用场景,包括:
-
多模态模型:如 Qwen2.5-VL、InternVL 2.5
-
图像生成模型:如 Stable Diffusion、Flux
-
语音模型(STT/TTS):如 Whisper、CosyVoice
-
Embedding 模型:如 BGE、BCE、Jina
-
Reranker 模型:如 BGE Reranker、Jina Reranker
无论是个人开发者的桌面端,还是企业级数据中心,GPUStack 都能提供高效、灵活的私有部署方案,帮助用户轻松运行各类 AI 模型。
GPUStack 不仅仅是一个推理框架,它具备整体的部署、管理与运维解决方案,让大模型部署变得更加简单和高效,包括:
-
国产硬件支持:兼容昇腾、海光、摩尔线程等异构算力芯片
-
模型管理:支持模型升级、推理引擎多版本并存、离线部署
-
高可用:多实例负载均衡,确保高效稳定的推理表现
-
监控 & 可视化:提供 GPU/LLM 观测指标、Dashboard 仪表板
-
安全控制:用户管理、API 认证授权,满足企业级需求
如何安装 GPUStack?如果你对 GPUStack 感兴趣,可以参考以下步骤进行安装部署。
安装 GPUStack
脚本一键安装
❝
安装要求参考:https://docs.gpustack.ai/latest/installation/installation-requirements/
GPUStack 支持脚本一键安装、容器安装、pip 安装等各种安装方式,这里使用脚本方式安装。
在 Linux 或 macOS 上:
通过以下命令在线安装,安装完成需要输入 sudo 密码启动服务,这个步骤需要联网下载各种依赖包,网络不好可能需要花费十几到几十分钟的时间:
curl -sfL https://get.gpustack.ai | INSTALL_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple sh -s -
在 Windows 上:
以管理员身份运行 Powershell,通过以下命令在线安装,这个步骤需要联网下载各种依赖包,网络不好可能需要花费十几到几十分钟的时间:
$env:INSTALL_INDEX_URL = "https://pypi.tuna.tsinghua.edu.cn/simple" Invoke-Expression (Invoke-WebRequest -Uri "https://get.gpustack.ai" -UseBasicParsing).Content
当看到以下输出时,说明已经成功部署并启动了 GPUStack:
[INFO] Install complete. GPUStack UI is available at http://localhost. Default username is 'admin'. To get the default password, run 'cat /var/lib/gpustack/initial_admin_password'. CLI "gpustack" is available from the command line. (You may need to open a new terminal or re-login for the PATH changes to take effect.)
接下来按照脚本输出的指引,拿到登录 GPUStack 的初始密码,执行以下命令:
在 Linux 或 macOS 上:
cat /var/lib/gpustack/initial_admin_password
在 Windows 上:
Get-Content -Path (Join-Path -Path $env:APPDATA -ChildPath "gpustack\initial_admin_password") -Raw
在浏览器访问 GPUStack UI,用户名 admin,密码为上面获得的初始密码。
重新设置密码后,进入 GPUStack:
overview
纳管 GPU 资源
GPUStack 支持纳管 Linux、Windows 和 macOS 设备的异构 GPU 资源,步骤如下。
其他节点需要通过认证 Token 加入 GPUStack 集群,在 GPUStack Server 节点执行以下命令获取 Token:
在 Linux 或 macOS 上:
cat /var/lib/gpustack/token
在 Windows 上:
Get-Content -Path (Join-Path -Path $env:APPDATA -ChildPath "gpustack\token") -Raw
拿到 Token 后,在其他节点上运行以下命令添加 Worker 到 GPUStack,纳管这些节点的 GPU(将其中的 http://YOUR_IP_ADDRESS 替换为你的 GPUStack 访问地址,将 YOUR_TOKEN 替换为用于添加 Worker 的认证 Token):
在 Linux 或 macOS 上:
curl -sfL https://get.gpustack.ai | INSTALL_INDEX_URL=https://pypi.tuna.tsinghua.edu.cn/simple sh -s - --server-url http://YOUR_IP_ADDRESS --token YOUR_TOKEN
在 Windows 上:
$env:INSTALL_INDEX_URL = "https://pypi.tuna.tsinghua.edu.cn/simple" Invoke-Expression "& { $((Invoke-WebRequest -Uri "https://get.gpustack.ai" -UseBasicParsing).Content) } -- --server-url http://YOUR_IP_ADDRESS --token YOUR_TOKEN"
通过以上步骤,我们已经安装好 GPUStack 并纳管了多个 GPU 节点,接下来就可以使用这些 GPU 资源来部署所需的各种 DeekSeek R1 满血、量化、蒸馏模型和其他模型了。
总结
以上是关于如何安装 GPUStack 并在不同场景下部署 DeekSeek R1 模型的使用教程。你可以访问项目的开源仓库:https://github.com/gpustack/gpustack 了解更多信息。
GPUStack 是一个低门槛、易上手、开箱即用的私有大模型服务平台。它可以轻松整合并利用各种异构 GPU 资源,方便快捷地为生成式 AI 应用和应用开发人员部署所需的各种 AI 模型。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。