IEEE Trans|评估电网针对电动汽车充电生态系统攻击的安全度量研究

2025年1月,IEEE Transactions on Smart Grid期刊发表了一篇题为"Developing a Security Metric for Assessing the Power Grid’s Posture Against Attacks From EV Charging Ecosystem"的研究论文。该文针对电动汽车充电基础设施面临的网络安全威胁,提出了一个创新的安全评估框架,重点探讨了充电站管理系统、开放充电点协议等关键组件的脆弱性,并基于马尔可夫决策过程开发了定量评估方法。论文还结合深度学习技术实现了实时安全监控,在IEEE 33节点、69节点等多个测试系统上验证了方法的有效性,为电动汽车充电基础设施的安全防护提供了重要理论指导。

1. 研究背景与意义

随着电动汽车(Electric Vehicle,EV)的普及,智能电网(Smart Grid,SG)中的电动汽车供电设备(Electric Vehicle Supply Equipment,EVSE)数量迅速增长。为了提高用户体验,电动汽车充电站(Electric Vehicle Charging Station,EVCS)广泛采用信息和通信技术(Information and Communication Technologies,ICTs)。然而,ICTs的广泛部署也使电动汽车生态系统面临严重的网络安全威胁。如2022年俄罗斯电动汽车充电站被入侵,以及英国市政停车场充电站被黑客攻击等安全事件。这些攻击除了影响电动汽车用户的充电服务质量外,还可能导致发电机瞬时跳闸和连锁故障,危及配电网的安全稳定运行。因此,开发一种量化评估电网安全状态的度量方法具有重要意义。

2. 电动汽车生态系统架构与安全漏洞分析

2.1 系统架构

电动汽车充电生态系统是一个典型的信息物理融合系统,包括物理层和网络层。物理层主要由EVCS和配电网络构成,其中EVCS分为三种充电功率等级:Level 1充电器支持1.4 kW充电功率,Level 2充电器支持最高40 kW充电功率,Level 3直流快充充电器支持40-240 kW充电功率。网络层由充电站管理系统(Charging Station Management System,CSMS)、开放充电点协议(Open Charge Point Protocol,OCPP)、移动和Web应用程序等组件组成。EVCS通过固件控制充放电命令,并通过OCPP与CSMS通信,EV用户则可通过移动应用程序远程控制充放电过程,并通过HTTPS/GPRS与CSMS进行通信。

2.2 安全漏洞分析

研究发现电动汽车生态系统中存在多个重要的安全漏洞。首先是OCPP协议的脆弱性,虽然最新的OCPP V_2.0.1版本引入了强制使用传输层安全(Transport Layer Security,TLS)等安全改进,但仍然无法有效防御中间人(Man-in-the-Middle,MitM)攻击。攻击者可以通过MitM技术获取充电站身份识别信息和会话密钥,从而伪装成合法CSMS向充电站发送指令。

其次是CSMS系统的安全漏洞。以EV-Link和CSWI Etrel为代表的CSMS系统存在多个已知漏洞(如CVE-2018-7800、CVE-2018-7801、CWE79和CWE-1236),攻击者可通过SQL注入获取管理员权限,访问并修改EVCS固件。当被劫持的CSMS发送固件更新请求时,EVCS会下载并安装包含恶意代码的固件,使攻击者能够通过命令控制中心协调多个被感染的EVCS执行恶意操作。

此外,移动和Web应用程序也存在安全隐患。这些应用程序为用户提供远程充放电控制、支付管理和充电站定位等功能,但攻击者可以构建由合法移动账户组成的僵尸网络,通过创建大量虚假邮件进行验证来渗透EVSE业务网络。充电站的物理接入点,如USB端口、以太网端口和触摸屏等,同样可能被攻击者利用来修改系统配置和固件。

3. 基于马尔可夫决策过程的安全度量方法

本研究提出了基于马尔可夫决策过程(Markov Decision Process,MDP)的树状结构来量化系统安全状态。该结构包含状态集合、行为集合、转移概率函数和奖励函数四个关键组件。状态集合表示系统中可能被攻击的组件,包括OCPP、CSMS、移动应用和USB端口等可达状态;在多区域攻击情况下,还包括各区域EVCS的组合状态。行为集合定义了攻击者可能采取的MitM攻击、SQL注入、恶意软件注入等行动。转移概率函数基于通用漏洞评分系统(Common Vulnerability Scoring System,CVSS V3.1)计算,而奖励函数则量化攻击行为对系统的影响。

CVSS V3.1评分系统包括基础指标、时间指标和环境指标三个主要部分。基础指标评估漏洞的固有特征,包括攻击向量、攻击复杂度、所需权限、用户交互等因素,以及对机密性、完整性和可用性的影响。时间指标评估漏洞随时间变化的特征,考虑利用代码成熟度、补救级别和报告可信度。环境指标则根据具体用户环境对基础指标进行调整,并评估机密性、完整性和可用性需求。

针对奖励函数的设计,本研究从三个维度进行量化评估:充电站可用性影响、电压偏差和有功功率损耗。为了准确评估充电站可用性影响,开发了基于OCPP日志分析的框架,该框架包含SQL数据库存储充电会话信息,使用长短期记忆(Long Short-Term Memory,LSTM)网络进行异常检测,并通过计数器统计被操纵的充电站数量。电压偏差分析基于IEC 61000-3-3标准,将电压偏差超过±2.5%定义为告警阈值。有功功率损耗评估则参考IEEE标准,将总损耗增加超过8%作为告警判据。

4. 深度学习安全监控框架

本研究设计了基于深度卷积神经网络(Convolutional Neural Network,CNN)的监控框架,用于实时评估系统安全状态。CNN结构包含两个主要功能模块:特征提取和安全状态分类。特征提取模块使用两个卷积层,第一层配备32个5×1的卷积核进行空间特征学习,第二层使用64个3×1的卷积核学习更复杂特征。通过ReLU激活函数实现特征的非线性映射,并使用二维最大池化层进行降维。分类模块则通过扁平化层将多维特征转换为一维向量,最后经过全连接层和Softmax函数输出系统安全状态概率分布。训练过程采用交叉熵损失函数,数据集按照80%训练集、10%验证集和10%测试集的比例划分。

为验证该方法的实用性,搭建了完整的集成测试平台。该平台在物理层使用OPAL-RT 5650实时模拟器模拟配电网系统,配备远程终端单元(Remote Terminal Unit,RTU)和合并单元(Merging Unit,MU)采集系统状态。网络层采用虚拟球体(vSphere)模拟电动汽车生态系统,通过Python API控制EV负荷,并使用OCPP服务器管理充电站通信。各层之间通过IEC 61850、DNP3和Modbus等标准协议实现数据交换和控制指令传输。

5. 算例验证

本研究在三个不同规模的配电系统上进行了验证。在IEEE 33节点系统测试中,将网络划分为5个区域,构建了包含36个状态和56个行为的MDP树。单一故障分析显示,当折扣因子为0.95时,初始状态值为37.1798,最优攻击路径为通过CSMS控制第5区域充电站。当第5区域充电站被攻击时,18号节点的电压偏差达到2.01%。多重故障分析发现,在15种组合情况下,18号节点电压偏差超过2.5%的告警阈值,特别是当Zone1,2,3,4,5同时被攻击时,电压偏差达到3.28%,同时被操纵充电站比例升至40%,系统总功率损耗增加达到21.2%。

在IEEE 141节点系统的验证中,将网络划分为11个区域,构建了包含72个状态和116个攻击行为的MDP树。结果显示初始状态值为65.4941,最优攻击策略是首先攻击CSMS(动作a48),控制第3区域充电站。这表明即使在大规模系统中,该方法仍能有效识别关键脆弱点和可能的攻击路径。验证过程中系统的状态值和最优行为序列为:初始状态(65.4941,a48)→CSMS状态(69.9708,a55)→固件库状态(74.2533,a56)→充电站控制状态。

为了验证该方法在动态拓扑结构下的适用性,在IEEE 69节点系统上进行了深入测试。该系统包含68个常闭开关和5个常开开关,通过改变开关状态可形成不同的网络拓扑结构。测试结果表明,当所有联络开关闭合形成5个环网时,系统初始状态值为45.1263,最优攻击路径是通过CSMS控制61号节点的充电站。当未受攻击时,65号节点的标称电压为0.9315 p.u.;当61号和64号节点的充电站同时被攻击时,该节点电压降至0.8920 p.u.,偏差达到4.24%。这表明该方法能够有效评估动态拓扑变化下的系统安全状态。

6. 研究结论

本研究系统分析了电动汽车充电生态系统中的安全漏洞,提出了一种基于MDP树的量化安全评估方法。该方法通过CVSS V3.1评分系统计算状态转移概率,综合考虑充电站可用性、电压偏差和功率损耗设计奖励函数,能够有效量化系统安全状态。基于深度学习的实时监控框架可及时识别系统安全状态,为配电系统运营商提供决策支持。通过在不同规模配电系统上的验证,证明了该方法具有良好的可扩展性和适应性,尤其在面对配电网拓扑动态变化时仍能保持有效性。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值