deepseek+dify一键安装包视频版使用教程:
随着大家的深入使用,发现ollama部署大模型虽然方便,但是Dify知识库混合检索,需要有rerank模型,这一点上,ollama是不支持rerank模型的。
因此,部署一个Xinference平台来部署rerank模型的呼声越来越强烈。
于是,我就安排上了这篇部署教程。
一、什么是Xinference?
Xinference(全称Xorbits Inference)是一个性能强大且功能全面的分布式推理框架,旨在为各种AI模型的运行和集成提供便捷的解决方案。
你可以理解为:它是一个超级智能小助手,可以帮你把各种厉害的AI模型轻松部署在本地并运行起来,让它们在你的电脑或者服务器上高效地干活。
二、安装Xinference
请注意:安装xinference需要电脑支持 NVIDIA 的 GPU,否则,后面的步骤无法运行
一)打开 powershell
按下 win 键,搜索并打开powershell:
二)创建容器宿主机目录
造打开的 powershell
中粘贴如下命令,递归创建所需目录:
注意:目录位置可以根据自己电脑情况进行调整,此处默认创建在了C盘根目录,以后xinference的数据都会存在此处
mkdir "C:\xinference"
三)拉取xinference镜像并创建容器
还是在打开的 powershell
中粘贴如下命令,拉取并创建启动 xinference
容器:
请注意:本步是安装 xinference
,需要电脑支持 NVIDIA 的 GPU,否则,无法运行,会报如下错误:
`& docker run -d ` --name xinference ` -v "C:\xinference:/xinference" ` -e XINFERENCE_HOME="/xinference" ` -p 9997:9997 ` --gpus all ` xprobe/xinference:latest ` xinference-local -H 0.0.0.0 --log-level debug`
至此,xinference 服务就创建完成并已经启动了,可以访问它的UI界面了 !
四)访问 Xinference 页面
浏览器输入:http://localhost:9997
即可访问
三、下载模型
此处要从huggingface上下载大模型 ,所以需要科学上网
一)下载embedding模型
点击 EMBEDDING MODELS
,这里我们选择排名比较靠前的 bge-large-zh-v1.5
点击部署以后,可以在容器内看到执行下载的信息
二)下载rerank模型
切换到 RERANK MODELS
下面,这里我们依旧选择 beg系列的模型:bge-reranker-large
他对中英文 支持都很不错
四、获取xinference一键安装包
如果自己电脑拉取docker镜像总失败,可以考虑下载我封装好的一键安装包。
不需要再去下载docker镜像,只需要点击Xinference.exe
即可启动xinference服务,且已经包含离线embedding+rerank模型,无需担心网络问题下载失败
关注公众号:阿坡RPA
回复关键字:xinference
即可获取xinference一键安装包
一)获取下载链接
二)解压缩
三)启动服务
四)等待服务启动完成
注意:根据电脑不同,启动时间各不相同,一般在3-5分钟左右,等自动打开浏览器页面,如果打开浏览器页面时,显示无法访问,说明服务还没完全启动,可以再等几分钟,在刷新一下页面即可
五)xinference页面
五、到Dify配置在xinference中安装的模型
来到Dify,点击右上角用户头像–》设置–》供应商,安装Xiference插件,用来配置模型
一)安装xinference插件
安装插件需要连接dify插件市场,可能需要科学上网,当然,也可以用别人下载好的插件,使用本地离线文件方式安装
二)配置模型
主要填写信息:
类型选择,模型名称,模型ID,xinference的服务器URL
其他选项默认
1、配置rerank模型
1)选择模型类型
2)填写模型名称和ID等信息
此处模型名称和模型UID相同,我们的xinference是在docker容器内的,所以,服务器URL是:http://host.docker.internal:9997
2、配置embedinig模型
嵌入模型配置和rerank模型的配置类似
1)选择模型类型
2)填写模型名称和ID等信息
六、Dify系统模型配置embbeding和rerank模型
七、小结
本文详细讲述了xinference的部署及与Dify上配置xinference部署好的嵌入模型和rerank模型。
xinference
是一个非常强大的平台,他还可以部署很多强大的开源模型,比如:大语言模型,视频生成模型,图片生成模型,音频生成模型等等。大家部署完了以后,可以自己折腾更多的模型,为自己的工作场景提效。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。