大模型与医学人工智能

颠覆性技术如大模型和人工智能正以迅猛的速度改变医疗健康领域。《论文速读》栏目旨在跟踪这些领域的最新进展,整理全球学术期刊中的前沿论文,帮助读者洞悉热门领域的最新趋势和突破。

本期聚焦大型语言模型(LLMs)在医学推理和临床决策中的优势与局限性。研究探讨了 LLMs 在处理开放性临床问题时因思维僵化而导致的推理失败,分析了其在医疗决策中的偏见与可信度挑战,并评估了 LLMs 在不同医疗任务中的推理能力。结果表明,尽管 LLMs 在特定任务中可优于医生,但仍存在过度自信、推理偏差及数据依赖问题。此外,DeepSeek-R1 在眼科推理任务中的表现优于主流 LLMs,凸显了领域特定模型的潜在价值。这些研究强调了在临床环境中谨慎部署 LLMs 的必要性,并为未来优化模型推理能力和公平性提供了方向。

01.Is generative artificial intelligence capable of clinical reasoning?

◎ 标题:生成式人工智能能否进行临床推理?

◎ 摘要:计算机如何才能像医生一样思考?这一问题困扰了从事临床推理人工智能(AI)研究的医生们长达 70 余年。最早一批研究该问题的医生认为,人类医生的直觉性思维难以被计算机模拟,因而提出基于大规模流行病学研究、标准化数据收集和概率推理的“计算机化”推理方法。20 世纪 70 年代,Tim De Dombal 将这些技术重新定义为临床决策支持系统(CDSS),如今已成为医疗实践的重要组成部分,例如用于肺栓塞分诊、抗生素使用决策以及癌症预后评估等。然而,尽管这些算法有助于临床决策,但仍无人认为它们真正具备推理能力。

*02.DeepSeek-R1 Outperforms Gemini 2.0 Pro, OpenAI o1, and o3-mini in Bilingual Complex Ophthalmology Reasoning*

***◎ 标题:*****DeepSeek-R1 在双语复杂眼科推理中优于 Gemini 2.0 Pro、OpenAI o1 和 o3-mini

**◎ 摘要:**目的:评估DeepSeek-R1与其他三种最新发布的大型语言模型(LLMs)在双语复杂眼科案例中的准确性和推理能力。方法:从中国眼科高级职称考试中收集了130个多项选择题(MCQs),涉及诊断(n = 39)和管理(n = 91),并分为六个主题。这些MCQs使用DeepSeek-R1翻译成英文。DeepSeek-R1、Gemini 2.0 Pro、OpenAI o1和o3-mini的回答在2025年2月15日至2月20日期间以默认配置生成。准确性计算为正确回答问题的比例,遗漏和额外回答被视为错误。通过分析推理逻辑和推理错误的原因评估推理能力。结果:DeepSeek-R1展示了最高的整体准确性,在中文MCQs中达到0.862,在英文MCQs中达到0.808。Gemini 2.0 Pro、OpenAI o1和OpenAI o3-mini在中文MCQs中的准确性分别为0.715、0.685和0.692(与DeepSeek-R1相比均为P<0.001),在英文MCQs中分别为0.746(P=0.115)、0.723(P=0.027)和0.577(P<0.001)。DeepSeek-R1在中英文MCQs的五个主题中均达到最高准确性。它在中文进行的管理问题中也表现出色(均为P<0.05)。推理能力分析显示,四个LLMs共享相似的推理逻辑。忽略关键阳性病史、忽略关键阳性体征、误解医学数据和过于激进是最常见的推理错误原因。结论:DeepSeek-R1在双语复杂眼科推理任务中的表现优于其他三种最先进的LLMs。虽然其临床适用性仍具挑战性,但它在支持诊断和临床决策方面显示出前景。

img

Figure:Overview of the study

03.Limitations of Large Language Models in Clinical Problem-Solving Arising from Inflexible Reasoning

***◎ 标题:*****大型语言模型在临床问题解决中的局限性:源于思维僵化的推理缺陷

**◎ 摘要:**大型语言模型(LLMs)在医疗问答基准测试中已达到接近人类的准确率。然而,近期研究揭示了其在开放性临床场景中的局限性,引发了对其推理能力在复杂真实世界医疗任务中的稳健性和泛化能力的担忧。为探究 LLM 在临床问题解决中的潜在失败模式,本文提出医学抽象与推理语料库(M-ARC),该语料库通过一系列情境测试 LLM 的临床推理能力,特别是利用“定势效应”(Einstellung effect)——即因先前经验导致的思维固着,来评估 LLM 是否仅依赖训练数据中的模式匹配,而非灵活推理。研究发现,包括当前最先进的 o1 和 Gemini 模型在内的 LLM,在 M-ARC 测试中的表现明显逊色于临床医生,常表现出缺乏基本医学常识推理的现象,并容易产生幻觉。此外,不确定性分析表明,尽管准确率有限,LLMs 仍表现出过度自信的倾向。M-ARC 揭示的 LLM 医学推理失败模式凸显了在临床应用中谨慎部署这些模型的必要性。

img

Figure:Demonstration of M-ARC question utilizing long-tail reasoning pattern.

04.Biases and Trustworthiness Challenges with Mitigation Strategies for Large Language Models in Healthcare

*******◎ 标题:*********大型语言模型在医疗领域的偏见与可信度挑战及其缓解策略

**◎ 摘要:**大型语言模型(LLMs)的快速发展使其在医疗领域展现出强大的决策和学习能力,特别是在医学筛查和诊断过程中。然而,LLMs 仍然是一种“黑箱”系统,难以保证决策的公平性和可信度。尽管已有诸多方法试图缓解 LLMs 的局限性,但在高风险领域全面部署 LLMs 仍需深入研究。本文探讨 LLMs 在医疗领域的偏见及可信度问题,并提出相应的缓解策略。研究重点分析了临床、认知和人口统计方面的偏见,并从数据、模型和推理层面探讨缓解方法。此外,本文系统评估了现有的偏见量化指标及医疗基准,研究其在评估临床 LLMs 可信度方面的作用。研究通过实证分析,提取现有患者记录以微调 Llama 2,并检测模型输出中的各类偏见,同时应用现有的偏见缓解策略。然而,实验结果表明,现有方法仍存在不足,亟需更高级的技术来优化 LLMs 的公平性与可信度。本文最后总结了未来研究方向,强调了偏见缓解与可信度提升在临床决策中的重要性。

img

Figure:Bias and Trust Evaluation

05.Clinical Reasoning of a Generative AI Model Compared With Physicians

***◎ 标题:*****生成式 AI 在临床推理中的表现:与医生的比较

**◎ 摘要:**大型语言模型(LLMs)在临床推理方面展现出一定潜力,但其将临床数据整合为问题表述的能力尚未得到充分研究。本文比较了一款 LLM 在临床推理方面的表现与医生的推理能力,并采用针对医生制定的标准进行评估。研究招募了两家美国波士顿学术医疗中心的内科住院医生及主治医生,共使用 20 例临床病例,每例病例分为 4 个阶段,逐步提供临床数据。研究采用修订版 IDEA(R-IDEA)评分体系评估临床推理质量,并对 LLM 和医生的答案进行盲评。研究结果显示,LLM 在 R-IDEA 评分上优于医生,表现出较强的临床推理能力。然而,LLM 也更容易产生错误推理,尤其是在零样本推理情况下。研究强调,在将 LLM 整合到临床工作流程之前,需进行多层次评估,以确保其推理能力的可靠性。

img

Table:Descriptive Statistics of Clinical Reasoning Outcomes Stratified by Respondent Type

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值