摘要:AI时代,企业需要构建具备统一连接、治理、语义标准化、智能处理、调度编排、服务接口、展现运营和架构扩展八大能力的企业级数据统一管理的操作系统,以应对数据量增长、类型多样与复杂化带来的挑战。
AI时代的到来,企业面临的数据量空前增长,数据类型多样、来源广泛、结构复杂。因此,需要一个能够满足以下基本要求的企业全域数据统一管理操作系统(也称“企业级数据操作系统”或“数据操作平台”):
一、统一连接与集成能力
1.多源异构数据接入:支持结构化、半结构化、非结构化数据(如数据库、文件、日志、图像、视频等)的统一连接;
2.实时与离线数据采集:支持批处理与流处理,满足不同场景的数据采集需求;
3.连接多种系统:如ERP、CRM、IoT平台、大数据平台、云服务、API等。
二、数据统一治理能力
1.元数据管理:对数据资源的血缘、生命周期、分类、变更、依赖关系等进行统一管理;
2.主数据管理(MDM):实现业务关键实体(如客户、产品、组织)的统一视图;
3.数据质量管理:包括数据校验、清洗、标准化、监控、预警机制;
4.数据权限与安全:支持基于角色/组织/标签的权限管理,保证数据安全合规。
三、统一语义与标准化能力
1.统一数据语义模型:构建数据资产目录、数据词汇表、业务指标体系;
2.语义平台/知识图谱:支持智能查询、智能推荐、智能匹配,赋能AI场景;
3.标准统一:对指标口径、数据定义、单位等进行规范管理,避免“口径不一”。
四、智能处理与分析能力
1.AI能力嵌入:支持AI模型训练与部署,辅助数据清洗、建模、预测等;
2.智能数据服务:如自然语言查询(NLQ)、自动报表生成、数据问答;
3.低代码/无代码分析:业务人员也可快速完成数据分析与应用搭建。
五、统一调度与编排能力
1.数据流程编排:支持图形化、可视化的任务流配置、调度与监控;
2.跨系统协同:支持跨平台、跨数据源的任务编排与流程自动化;
3.实时调度与弹性伸缩:适应业务高峰与异构计算资源的动态分配。
六、统一服务与接口能力
1.数据服务化:支持以API、SQL、GraphQL等方式统一发布数据服务;
2.服务治理:包含服务注册、鉴权、限流、监控等能力;
3.适配多种消费端:支持BI工具、业务系统、微服务、AI模型等灵活调用。
七、统一展现与运营能力
1.数据资产运营平台:可视化展现数据资产使用情况、价值评估、热点分析;
2.仪表盘与报告系统:支持个性化、自定义的数据可视化与分析;
3.用户行为分析与审计:跟踪数据访问、使用、修改等行为,形成审计日志。
八、架构开放性与可扩展性
1.模块化、插件化架构:支持功能灵活扩展;
2.支持多云与混合部署:本地、私有云、公有云环境均可灵活部署;
3.支持标准协议与接口:如RESTful、gRPC、JDBC、ODBC等,方便对接第三方系统。
总结
AI时代的企业全域数据统一管理操作系统(即“企业级数据操作系统”或“数据操作平台”)需具备以下八大基本能力:
- 统一连接与集成:支持多源异构数据(结构化、半结构化、非结构化)、实时与离线数据采集,连接各类系统。
- 数据统一治理:包括元数据管理、主数据管理、数据质量控制和权限安全管理。
- 统一语义与标准化:构建统一数据语义模型、知识图谱,规范数据标准与指标口径。
- 智能处理与分析:嵌入AI能力,支持智能数据服务及低代码/无代码分析。
- 统一调度与编排:实现跨系统数据流编排、实时调度与弹性资源管理。
- 统一服务与接口:通过API、SQL、GraphQL等统一发布数据服务,支持多种消费端调用。
- 统一展现与运营:提供数据资产可视化、个性化仪表盘、用户行为审计等功能。
- 架构开放与可扩展:模块化设计,支持多云/混合部署,兼容标准接口协议,便于对接第三方系统。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。