1. 大模型微调简介
大模型(Large Language Models, LLMs)通常是指模型参数量极大的深度学习模型,能够理解和生成人类语言,在大量的文本数据上进行训练,可以执行广泛的任务。
我们首先会想为什么要进行大模型微调,这是因为大模型的训练成本极其高昂,同时大模型的知识库有其滞后性,以及希望在特定任务上的能力能够得到提升。为此,微调(Fine-tuning)
成为了一种重要手段,其借鉴于计算机视觉模型的迁移学习,这是一个非常伟大的想法。总之,通过对预训练模型进行针对性调整,我们可以使其适应具体应用场景,那么更新大模型知识的方法除了微调这一种,还有一种叫RAG(增强检索生成),这就是后话了。
2. 微调的主要方法
2.1 全量微调(Full Fine-tuning)
- 描述:对预训练模型的所有参数都进行更新
- 优点:灵活性高
- 缺点:需要较大的计算资源
- 使用场景:目标任务数据量大且计算资源充足(一般不使用)
2.2 指令微调(Instruction Tuning)
- 描述:用在特定任务任务下的明确指令和示例也对大模型进行微调,不更新模型知识
- 优点:专注于特定任务的微调,保留了模型的基础能力
- 缺点:限制较大,无法充分发挥模型能力
2.3 参数高效微调(Parameter-Efficient Fine-tuning,PEFT)
参数高效微调有以下几种,我们后续会主要实战lora微调,其他的将在后续的文章的里更新。
2.3.1 Adapter Tuning
- 描述:在模型的每一层插入小型的适配模块,仅训练这些模块的参数
2.3.2 Prompt Tuning
- 描述:通过优化提示(prompt)而非模型参数来引导模型输出
2.3.3 Prefix Tuning
- 描述:在模型输入前添加一个连续的且任务特定的向量序列称之为prefix,固定PLM的所有参数,只更新优化特定的任务的prefix
2.3.4 LoRA (Low-Rank Adaptation)
- 描述:通过低秩分解的方式更新模型权重,显著减少了需要训练的参数数量。
3. 微调的关键步骤
3.1 数据准备
我们要收集与目标任务相关的标注数据。本篇文章将使用alpaca_gpt4_data_zh.json
数据集进行微调。
3.2 模型选择
我们要选择适合任务需求的预训练模型,其中Qwen系列的模型在各个尺寸上的都比较齐全,为方便演示本次演示将使用qwen2.5-0.5b
。
3.3 超参数设置
我们要确定学习率、批量大小、训练轮数等超参数,但这些都需要我们进行大量的实践,也就是说,什么样的超参数会更好,更多的是根据实验人员的经验来设置的。
3.4 训练与验证
在训练集上进行微调,此次训练会使用huggingface的库peft
。
3.5 模型评估与部署
在测试集上全面评估模型性能,确保其满足实际应用需求。
4 微调实战
4.1 实验环境
- NVIDIA RTX 3060 (12GB)显存
- transformers==4.46.3
- peft==0.14.0
- datasets
4.2 安装依赖
pip install transformers
pip install peft
4.3 准备数据集
from datasets import load_dataset
dataset = load_dataset('json', data_files='alpaca_gpt4_data_zh.json')
# dataset["train"].save_to_disk("alpaca_gpt4_data_zh")
dataset = dataset["train"].train_test_split(test_size=0.1)
4.4 加载预训练模型和分词器
# 模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-0.5B-Instruct')
import torch
import transformers
from transformers import AutoTokenizer, AutoModelForCausalLM
tokenizer = AutoTokenizer.from_pretrained(model_dir)
# 设置精度为float16
model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.float16)
# 将模型参数迁移到GPU
model = model.cuda()
# 打印模型结构
print(model)
4.5 配置LoRA
from peft import LoraConfig, get_peft_model, set_peft_model_state_dict, get_peft_model_state_dict, TaskType
lora_r = 32
lora_alpha=16
target_modules=["q_proj", "k_proj", "v_proj"]
loraconfig = LoraConfig(
r=lora_r,
lora_alpha=16,
target_modules=target_modules,
task_type=TaskType.CAUSAL_LM
)
model = get_peft_model(model,loraconfig)
4.6 数据预处理
def generate_tokenize(one):
MAX_LENGTH = 256
input_ids,attention_mask,labels = [],[],[]
instruction = tokenizer("\n".join(["Human: "+ one["instruction"],one["input"]]).strip() + "\n\nAssistant: ")
response = tokenizer(one["output"] + tokenizer.eos_token)
input_ids = instruction["input_ids"] + response["input_ids"]
attention_mask = instruction["attention_mask"] + response["attention_mask"]
labels = [-100] * len(instruction["input_ids"]) + response["input_ids"]
if len(input_ids) > MAX_LENGTH:
input_ids = input_ids[:MAX_LENGTH]
attention_mask = attention_mask[:MAX_LENGTH]
labels = labels[:MAX_LENGTH]
return {
"input_ids": input_ids,
"attention_mask": attention_mask,
"labels": labels
}
tokenizer_dataset = dataset.map(generate_tokenize, remove_columns=dataset['train'].column_names)
train_data = tokenizer_dataset['train']
val_data = tokenizer_dataset['test']
4.7 微调模型
from transformers import TrainingArguments, Trainer, DataCollatorForSeq2Seq
args = TrainingArguments(
output_dir="./lora_ft",
per_device_train_batch_size=8,
logging_steps=10,
num_train_epochs=1,
fp16=True,
)
trainer = Trainer(
model=model,
args=args,
train_dataset=train_data,
data_collator=DataCollatorForSeq2Seq(tokenizer=tokenizer, padding=True),
)
trainer.train()
4.8 加载原有模型并合并训练完得到的权重
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
# 模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('Qwen/Qwen2.5-0.5B-Instruct')
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForCausalLM.from_pretrained(model_dir, torch_dtype=torch.float16)
model = model.cuda()
from peft import PeftModel
lora_model = PeftModel.from_pretrained(model, model_id="lora_ft/checkpoint-5492")
prompt = tokenizer("Human: {}\n{}".format("生成一个人们去野营旅行可能需要的十件物品的清单。", "").strip() + "\n\nAssistant: ", return_tensors="pt").to(model.device)
response = tokenizer.decode(lora_model.generate(**prompt,max_length=256,do_sample=False)[0],skip_special_tokens=True)
print(response)
4.9 保存微调后的模型
output_model_dir = "merge_model"
mergemodel = lora_model.merge_and_unload()
mergemodel.save_pretrained(output_model_dir)
tokenizer.save_pretrained(output_model_dir)
4.10 使用微调后的模型
from transformers import AutoModelForCausalLM, AutoTokenizer
model_dir = "merge_model"
tokenizer = AutoTokenizer.from_pretrained(model_dir)
model = AutoModelForCausalLM.from_pretrained(model_dir)
model = model.cuda()
prompt = "生成一个人们去野营旅行可能需要的十件物品的清单。"
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt}
]
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
generated_ids = model.generate(
**model_inputs,
max_new_tokens=512
)
generated_ids = [
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
本次微调大概需要25分钟,还是很快的,同时也会发现微调后针对同一个问题回答的效果更好了,当然这只是一个小的实验,仍然有很多工作可以去做,下面是微调前和微调后的对比。
微调前
微调后
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。