深度学习模型的调参是提高模型性能和收敛速度的关键步骤。在本文中,我们将分享一些有效的深度学习模型调参技巧,并提供相应的代码示例。这些技巧可以帮助您更好地理解和优化您的深度学习模型。
- 学习率调整
学习率是深度学习中最重要的超参数之一。合适的学习率可以使模型更好地收敛。以下是一些学习率调整的常见方法:
# 使用指数衰减调整学习率
import tensorflow as tf
lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay(
initial_learning_rate, decay_steps,