基于LSTM和GRU的城市交通流量预测:完整代码和数据

本文介绍了使用LSTM和GRU网络进行城市交通流量预测的方法,包括数据集介绍、代码实现、模型训练及预测。通过历史交通流量数据,构建模型以预测未来交通情况,对比LSTM和GRU的预测效果,为交通管理和规划提供依据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

城市交通流量预测是交通规划和管理中的重要任务,能够帮助城市决策者优化交通流动和减少拥堵。本文将介绍如何使用长短期记忆网络(LSTM)和门控循环单元(GRU)来预测城市交通流量,并提供完整的代码和数据。

数据集介绍:
我们使用的数据集包含了历史上某个城市的交通流量数据。每条数据包含了日期和对应的交通流量值。我们的目标是根据历史数据来预测未来一段时间内的交通流量。

代码实现:
首先,我们需要导入所需的库和模块。在这个问题中,我们将使用Python和TensorFlow来实现我们的模型。

import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值