城市交通流量预测是交通规划和管理中的重要任务,能够帮助城市决策者优化交通流动和减少拥堵。本文将介绍如何使用长短期记忆网络(LSTM)和门控循环单元(GRU)来预测城市交通流量,并提供完整的代码和数据。
数据集介绍:
我们使用的数据集包含了历史上某个城市的交通流量数据。每条数据包含了日期和对应的交通流量值。我们的目标是根据历史数据来预测未来一段时间内的交通流量。
代码实现:
首先,我们需要导入所需的库和模块。在这个问题中,我们将使用Python和TensorFlow来实现我们的模型。
import numpy as np
import pandas as pd
from sklearn.preprocessing import MinMaxScaler
from tensorflow