欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。
一项目简介
一、项目背景
肺部CT图像分割在医学诊断中占据重要地位,它有助于医生快速、准确地识别和分析肺部病变。然而,由于肺部CT图像的复杂性和多样性,传统的图像分割方法往往难以达到理想的分割效果。近年来,深度学习技术的快速发展为肺部CT图像分割提供了新的解决方案。其中,Unet网络作为一种经典的深度学习网络结构,在医学图像分割领域取得了显著成果。因此,本项目旨在利用Unet网络实现肺部CT图像的精确分割。
二、项目目标
本项目的主要目标是通过深度学习技术,特别是Unet网络,实现对肺部CT图像的精确分割。具体目标包括:
构建一个高效的Unet网络模型,用于肺部CT图像的分割。
提高肺部CT图像分割的准确率,减少噪声和伪影的干扰。
实现对肺部不同区域(如肺实质、血管、气管等)的精确分割。
开发一个用户友好的界面,方便医生查看和分析分割结果。
三、项目内容
数据收集与预处理:
收集包含肺部CT图像的数据集,确保数据的质量和多样性。
对图像进行预处理,包括去噪、归一化、图像增强等操作,以提高模型的训练效果。
根据需要,对图像进行标注,为模型的训练提供标签。
模型构建与训练:
利用深度学习框架(如TensorFlow、PyTorch等)构建Unet网络模型。
根据肺部CT图像的特点,对Unet网络进行适当的改进和优