MIA 2025 | 从多源注释中学习鲁棒的医学图像分割

论文信息

题目:Learning robust medical image segmentation from multi-source annotations
从多源注释中学习鲁棒的医学图像分割
作者:Yifeng Wang、Luyang Luo、Mingxiang Wu、Qiong Wang、Hao Chen
源码:https://github.com/wangjin2945/UMA-Net

论文创新点

  1. 提出全新网络:论文提出不确定性引导的多源注释网络(UMA-Net),该网络能够有效从多样的注释源中学习,并输出偏差较小的分割结果。
  2. 设计不确定性引导模块:通过注释不确定性估计模块(AUEM)质量评估模块(QAM)<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值