React + LangChain + RAG实战:打造一个专业的AI医疗助手

React + LangChain + RAG实战:打造一个专业的AI医疗助手

前言

本文将分享如何基于React和LangChain框架,结合通义千问大语言模型,打造一个专业的AI医疗助手应用,实现图文多模态交互、医疗知识检索以及智能对话功能。

技术栈

  • 前端:React + TypeScript + CSS
  • 后端:FastAPI + LangChain + Pydantic
  • 模型:通义千问(Qwen)文本模型 + 通义千问VL多模态模型
  • 知识库:本地医疗知识库 + 向量检索

系统架构

系统采用前后端分离架构,通过RESTful API进行通信:

  1. 前端:负责UI呈现、用户交互和消息管理
  2. 后端:负责模型调用、知识检索和会话管理
  3. 知识库:提供专业医疗知识支持

核心功能

1. 多模态交互

支持图文结合的方式咨询医疗问题,用户可以上传病历、检查报告等图片,AI能够理解图片内容并给出专业解读。

// 前端图片上传与转Base64处理
const convertImageToBase64 = (file: File): Promise<string> => {
  return new Promise((resolve, reject) => {
    const reader = new FileReader();
    reader.onload = () => resolve(reader.result as string);
    reader.onerror = error => reject(error);
    reader.readAsDataURL(file);
  });
};
2. RAG检索增强生成

使用LangChain实现的RAG功能,可以从本地医疗知识库中检索相关内容,增强AI的回答质量和专业性:

# 使用RAG增强回答
if docs:
    # 如果找到相关文档,准备上下文
    context = format_docs(docs)
    print(f"找到相关文档,使用RAG模板生成回答,文档数量: {len(docs)}")
    
    # 组合上下文和历史到RAG提示
    rag_chain = (
        rag_prompt 
        | model 
        | StrOutputParser()
    )
    return rag_chain.invoke({
        "context": context, 
        "question": question,
        "history_context": history_context
    })
3. 流式响应

实现打字机效果的流式响应,提升用户体验:

# 后端流式响应实现
async def event_generator():
    # 模拟流式输出
    for char in full_response:
        yield {
            "event": "message",
            "data": char
        }
        await asyncio.sleep(0.01)
4. Markdown渲染

支持Markdown格式的回答渲染,使医疗信息展示更加结构化和易读:

// Markdown渲染组件
const MarkdownContent = ({ content }: { content: string }) => {
  return (
    <ReactMarkdown 
      rehypePlugins={[rehypeSanitize]} 
      remarkPlugins={[remarkGfm]}
    >
      {content}
    </ReactMarkdown>
  );
};
5. 会话持久化

支持对话历史的保存和恢复,让用户可以继续之前的咨询:

// 第一次加载时检查本地存储的会话ID
useEffect(() => {
  const savedConversationId = localStorage.getItem('medicalAssistantConversationId');
  
  if (savedConversationId) {
    setConversationId(savedConversationId);
    loadChatHistory(savedConversationId);
  }
}, []);

关键实现细节

多模态调用优化

直接使用DashScope SDK调用多模态模型,确保图片分析能力:

# 调用多模态模型
response = MultiModalConversation.call(
    model='qwen-vl-plus',
    messages=messages,
    stream=False,
    result_format='message',
    temperature=0.7,
    max_tokens=1000,
)
图片处理

在后端验证和处理用户上传的图片:

# 解码base64图片并验证
image_bytes = base64.b64decode(base64_data)
image = Image.open(io.BytesIO(image_bytes))
image_format = image.format.lower() if image.format else "jpeg"
提示工程

为医疗场景定制的提示模板,引导AI生成专业、负责任的医疗建议:

RAG_TEMPLATE = """你是一位专业的AI医疗助手,会提供准确、有帮助的医疗健康信息。
请基于以下参考信息、聊天历史以及你的专业知识回答用户的问题:

参考信息:
{context}

{history_context}

用户问题: {question}

请遵循以下回答规则:
1. 使用Markdown格式化你的回答,使其更易于阅读
2. 如有医学专业术语,可以使用斜体或加粗标记,并简单解释其含义
3. 如果是重要的健康警告或注意事项,请使用引用块标记
...
"""

项目难点与解决方案

1. RAG稳定性问题

问题:初始RAG组件存在路径解析错误和API配置问题 解决:实现了更可靠的文件路径解析和API配置,并添加了全面的错误处理

2. 多模态集成挑战

问题:模型无法正确处理图片内容 解决:放弃LangChain包装,直接使用DashScope SDK调用模型,并优化消息格式

3. 图片显示问题

问题:历史记录中的图片无法正确显示 解决:实现图片URL转换和静态文件服务,确保图片可以正确加载和显示

# 处理每条消息中的图片URL
processed_messages = []
for msg in messages:
    processed_msg = msg.copy()
    if "image_url" in processed_msg:
        image_path = processed_msg["image_url"]
        if image_path and os.path.exists(image_path):
            relative_path = os.path.relpath(image_path, UPLOAD_DIR)
            processed_msg["image_url"] = f"/uploads/{relative_path}"
    processed_messages.append(processed_msg)

总结与展望

本项目通过结合React和LangChain,成功构建了一个功能完整的AI医疗助手应用。系统支持多模态交互、知识增强生成和流式响应等特性,为用户提供专业、易用的医疗咨询体验。

未来计划:

  • 集成更多的医疗专科知识库
  • 添加语音交互功能
  • 支持医疗报告自动解读
  • 实现用户个性化推荐

 

<think>好的,我现在要处理用户关于AI大模型应用开发学习路线的问题。首先,我需要回顾用户提供的引用内容,确保回答准确。引用1提到需要扎实的基础知识、系统学习路线和持续实践。引用2和3讨论了从设计到部署的全流程,以及分阶段的学习计划。引用4强调了从大模型接口和Prompt工程开始的学习步骤。 用户的需求是了解学习路线图,所以需要分阶段、结构清晰地呈现。首先,我应该从基础知识开始,包括数学和编程基础,接着是大模型理论,然后是接口使用和Prompt工程,再到应用开发框架,最后是部署和优化。每个阶段需要具体的时间安排和关键内容,例如Python编程、深度学习框架、Transformer架构等。 同时,用户示例中的快速排序回答结构值得参考,使用分点说明和代码示例。但这里可能需要调整,用项目示例代替代码,比如构建对话系统或知识库应用。此外,用户希望生成相关问题,我需要考虑相关的问题,比如数学基础的重要性、Prompt工程的学习资源、选择哪种框架等。 需要确保回答符合系统级指令:使用正确的中文和LaTeX格式,引用标识自然添加。例如,在提到Transformer架构时,可以引用[^3]中的阶段一内容。同时,避免使用Markdown,保持段落简洁。 最后,检查是否覆盖了所有关键点,并确保引用正确。比如,引用[^4]提到从接口开始学习,所以在阶段二中要明确这一点。阶段三的Prompt工程对应引用[^4]的第二步。项目实战部分可以参考引用[^2]的实战营内容。总结时,强调持续学习和实践,呼应引用[^1]的内容。</think>### AI大模型应用开发学习路线图 #### 一、基础准备阶段(1-2个月) 1. **数学与编程基础** - 线性代数:矩阵运算($A \cdot B = C$)、特征值分解 - 概率统计:贝叶斯定理($P(A|B) = \frac{P(B|A)P(A)}{P(B)}$) - Python编程:掌握Numpy/Pandas/Pytorch框架 ```python import torch model = torch.nn.Transformer() # Transformer模型基础实现 ``` 2. **深度学习基础** - 神经网络原理:前向传播($y = \sigma(Wx + b)$) - 自然语言处理:词嵌入($e_{word} \in \mathbb{R}^{d}$) - 学习资源:吴恩达《深度学习专项课程》[^1] #### 二、大模型核心技术阶段(3-4个月) 1. **大模型接口开发** - 掌握OpenAI API调用(如GPT-3.5/4) - 学习文心一言、智谱API等国产接口[^4] ```python from openai import OpenAI client = OpenAI() response = client.chat.completions.create(model="gpt-3.5-turbo", messages=[...]) ``` 2. **Prompt工程体系** - 设计原则:角色定义+任务描述+格式约束 - 高级技巧:思维链(CoT)、思维树(ToT)[^3] - 代码示例:知识增强型Prompt ```python prompt = """你是一名医学专家,根据以下研究文献: [文献内容]... 请用JSON格式输出症状分析""" ``` #### 三、应用开发阶段(2-3个月) 1. **开发框架实践** - LangChain:构建AI工作流 $$ \text{Chain} = \text{PromptTemplate} \rightarrow \text{LLM} \rightarrow \text{OutputParser} $$ - LlamaIndex:实现私有数据检索[^2] 2. **工程化能力培养** - 模型微调:LoRA/P-Tuning方法 - 性能优化:量化压缩(FP16→INT8) - 部署方案:Docker+FastAPI+云服务 #### 四、项目实战阶段(持续迭代) 1. **典型项目示例** - 智能对话系统(包含意图识别模块) - 企业知识库问答(RAG架构) - 自动化报告生成(多模态输出) 2. **前沿技术追踪** - Agent开发:ReAct框架 - 多模态应用:GPT-4V、Stable Diffusion集成 - 伦理安全:内容过滤($f_{filter}(x) \rightarrow \{0,1\}$)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值