bzoj4774 修路 斯坦纳树

Description


村子间的小路年久失修,为了保障村子之间的往来,法珞决定带领大家修路。对于边带权的无向图 G = (V, E),
请选择一些边,使得1 <= i <= d, i号节点和 n - i + 1 号节点可以通过选中的边连通,最小化选中的所有边
的权值和。

第一行三个整数 n, m,d,表示图的点数和边数。接下来的 m行,每行三个整数 ui, vi, wi,表示有一条 ui 与 vi
之间,权值为 wi 的无向边。
1 <= d <= 4
2d <= n <= 10^4
0 <= m <= 10^4
1 <= ui, vi <= n
1 <= wi <= 1000

一行一个整数,表示答案,如果无解输出-1

Solution


d很小,考虑斯坦纳树求出f[i,j]表示目前在i连通集合状态为j的最小代价
注意到题目只要求i和n-i+1分别连通,那么我们令g[i]表示连通集合状态为i时的最小代价,枚举i的合法子集转移
我们定义合法子集当且仅当子集中连通的点一一对应,然后就没了

第一次交的时候没判-1。。

Code


				
#include <stdio.h>
#include <string.h>
#include <algorithm>
#include <queue>
#define rep(i,st,ed) for (register int i=st,_=ed;i<=_;++i)
#define fill(x,t) memset(x,t,sizeof(x))

const int N=10005;
const int M=521;

struct edge {int y,w,next;} e[N*2];

std:: queue <int> que;

int f[N][M],g[M];
int ls[N],edCnt,n,m,d;

bool vis[N];

int read() {
	int x=0,v=1; char ch=getchar();
	for (;ch<'0'||ch>'9';v=(ch=='-')?(-1):(v),ch=getchar());
	for (;ch<='9'&&ch>='0';x=x*10+ch-'0',ch=getchar());
	return x*v;
}

void add_edge(int x,int y,int w) {
	e[++edCnt]=(edge) {y,w,ls[x]}; ls[x]=edCnt;
	e[++edCnt]=(edge) {x,w,ls[y]}; ls[y]=edCnt;
}

void spfa(int rec) {
	for (;!que.empty();) {
		int now=que.front(); que.pop();
		for (int i=ls[now];i;i=e[i].next) {
			if (f[now][rec]+e[i].w<f[e[i].y][rec]) {
				f[e[i].y][rec]=f[now][rec]+e[i].w;
				if (!vis[e[i].y]) {
					vis[e[i].y]=true;
					que.push(e[i].y);
				}
			}
		} vis[now]=false;
	}
}

bool check(int x) {
	for (int i=0;i<d;++i) {
		if (((x>>i)&1)&&(!((x>>(i+d))&1))) return false;
	}
	return true;
}

int main(void) {
	n=read(),m=read(),d=read();
	rep(i,1,m) {
		int x=read(),y=read(),w=read();
		add_edge(x,y,w);
	}
	fill(f,31); fill(g,31);
	rep(i,1,d) {
		f[i][1<<(i-1)]=0;
		f[n-i+1][1<<(i+d-1)]=0;
	}
	rep(j,0,(1<<(d*2))-1) {
		rep(i,1,n) {
			for (int k=j;k;k=(k-1)&j) {
				f[i][j]=std:: min(f[i][j],f[i][k]+f[i][j-k]);
			}
			if (f[i][j]!=f[0][0]) {
				que.push(i); vis[i]=true;
			}
		}
		spfa(j);
		if (check(j)) {
			rep(i,1,n) {
				g[j]=std:: min(g[j],f[i][j]);
			}
		}
	}
	rep(i,0,(1<<(d*2))-1) {
		for (int j=i;j;j=(j-1)&i) {
			if (check(j)&&check(i-j)) {
				g[i]=std:: min(g[i],g[j]+g[i-j]);
			}
		}
	}
	if (g[(1<<(d*2))-1]==f[0][0]) g[(1<<(d*2))-1]=-1;
	printf("%d\n", g[(1<<(d*2))-1]);
	return 0;
}
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时复杂度 树形dp的时复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时复杂度 动态规划的时复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值