证据理论(2)—— 多种合成公式

Yager 合成公式

  Yager 合成公式去掉了 DS 合成公式中的归一化因子 1 1 − k \frac{1}{1-k} 1k1 ,并将冲突系数 k k k 分配给了辨识框架 Ω \Omega Ω 对应的基本概率分配函数 m ( Ω ) m(\Omega) m(Ω)。公式定义如下: k = ∑ A 1 ∩ A 2 ∩ A 3 ⋯ = ∅ m 1 ( A 1 ) m 2 ( A 2 ) m 3 ( A 3 ) ⋯ k=\sum_{A_1\cap A_2\cap A_3\cdots=\emptyset}m_1(A_1)m_2(A_2)m_3(A_3)\cdots k=A1A2A3=m1(A1)m2(A2)m3(A3) m ( ∅ ) = 0 m ( A ) = ∑ A 1 ∩ A 2 ∩ A 3 ⋯ = A m 1 ( A 1 ) m 2 ( A 2 ) m 3 ( A 3 ) ⋯   , A ≠ ∅ , Ω m ( Ω ) = ∑ A 1 ∩ A 2 ∩ A 3 ⋯ = Ω m 1 ( A 1 ) m 2 ( A 2 ) m 3 ( A 3 ) ⋯ + k \begin{aligned} m(\emptyset)&=0 \\ \\ m(A)&=\sum_{A_1\cap A_2\cap A_3\cdots=A}m_1(A_1)m_2(A_2)m_3(A_3)\cdots,\quad A \neq\emptyset,\Omega \\ \\ m(\Omega)&=\sum_{A_1\cap A_2\cap A_3\cdots=\Omega}m_1(A_1)m_2(A_2)m_3(A_3)\cdots+k \\ \end{aligned} m()m(A)m(Ω)=0=A1A2A3=Am1(A1)m2(A2)m3(A3),A=,Ω=A1A2A3=Ωm1(A1)m2(A2)m3(A3)+k

Example

Ω = { A , B , C } m 1 : m 1 ( { A } ) = 0.98 , m 1 ( { B } ) = 0.01 , m 1 ( { C } ) = 0.01 m 2 : m 2 ( { A } ) = 0 , m 2 ( { B } ) = 0.01 , m 2 ( { C } ) = 0.99 m 3 : m 3 ( { A } ) = 0.9 , m 3 ( { B } ) = 0 ,   m 3 ( { C } ) = 0.1 \begin{aligned} &\Omega=\{A,B,C\} &\quad &\quad \\ &m_1:m_1(\{A\})=0.98,& m_1(\{B\})=0.01,\quad & m_1(\{C\})=0.01 \\ &m_2:m_2(\{A\})=0, & m_2(\{B\})=0.01,\quad & m_2(\{C\})=0.99 \\ &m_3:m_3(\{A\})=0.9, & m_3(\{B\})=0, \:\qquad&m_3(\{C\})=0.1 \\ \end{aligned} Ω={A,B,C}m1:m1({A})=0.98,m2:m2({A})=0,m3:m3({A})=0.9,m1({B})=0.01,m2({B})=0.01,m3({B})=0,m1({C})=0.01m2({C})=0.99m3({C})=0.1 k = 1 − [ m 1 ( { A } ) m 2 ( { A } ) m 3 ( { A } ) + m 1 ( { B } ) m 2 ( { B } ) m 3 ( { B } ) + m 1 ( { C } ) m 2 ( { C } ) m 3 ( { C } ) ] = 1 − [ 0.98 × 0 × 0.9 + 0.01 × 0.01 × 0 + 0.01 × 0.99 × 0.1 ] = 0.99901 m ( { A } ) = m 1 ( { A } ) m 2 ( { A } ) m 3 ( { A } ) = 0.98 × 0 × 0.9 = 0 m ( { B } ) = 0 m ( { C } ) = m 1 ( { C } ) m 2 ( { C } ) m 3 ( { C } ) = 0.01 × 0.99 × 0.1 = 0.00099 m ( Ω ) = 0 + k = 0.99901 \begin{aligned} k&=1-[m_1(\{A\})m_2(\{A\})m_3(\{A\})+m_1(\{B\})m_2(\{B\})m_3(\{B\})+m_1(\{C\})m_2(\{C\})m_3(\{C\})] \\ &=1-[0.98\times0\times0.9+0.01\times0.01\times0+0.01\times0.99\times0.1] \\ &=0.99901 \\ m(\{A\})&=m_1(\{A\})m_2(\{A\})m_3(\{A\}) \\ &=0.98\times0\times0.9 \\ &=0 \\ m(\{B\})&=0 \\ m(\{C\})&=m_1(\{C\})m_2(\{C\})m_3(\{C\}) \\ &=0.01\times0.99\times0.1 \\ &=0.00099 \\ m(\Omega)&=0+k=0.99901 \\ \end{aligned} km({A})m({B})m({C})m(Ω)=1[m1({A})m2({A})m3({A})+m1({B})m2({B})m3({B})+m1({C})m2({C})m3({C})]=1[0.98×0×0.9+0.01×0.01×0+0.01×0.99×0.1]=0.99901=m1({A})m2({A})m3({A})=0.98×0×0.9=0=0=m1({C})m2({C})m3({C})=0.01×0.99×0.1=0.00099=0+k=0.99901

孙全提出的合成公式

  有 n 个证据源,对的应基本概率分配函数为 m 1 , m 2 , ⋯   , m n m_1,m_2,\cdots,m_n m1,m2,,mn。设证据源 i i i j j j 之间的冲突系数为 k i j k_{ij} kij k i j = ∑ A 1 ∩ A 2 = ∅ m i ( A 1 ) m j ( A 2 ) = 1 − ∑ A 1 ∩ A 2 ≠ ∅ m i ( A 1 ) m j ( A 2 ) k_{ij}=\sum_{A_1\cap A_2=\emptyset}m_i(A_1)m_j(A_2)=1-\sum_{A_1\cap A_2\neq\emptyset}m_i(A_1)m_j(A_2) kij=A1A2=mi(A1)mj(A2)=1A1A2=mi(A1)mj(A2) ε \varepsilon ε 为证据的可信度: ε = e − k ^ , k ^ = 2 n ( n − 1 ) ∑ i < j k i j \varepsilon=e^{-\hat{k}}, \quad \hat{k}=\frac{2}{n(n-1)}\sum_{i<j}k_{ij} ε=ek^,k^=n(n1)2i<jkij 公式定义如下: m ( ∅ ) = 0 m(\emptyset)=0 m()=0 m ( A ) = p ( A ) + k × ε × q ( A ) , A ≠ ∅ , Ω m(A)=p(A)+k\times\varepsilon\times q(A),\quad A \neq\emptyset,\Omega m(A)=p(A)+k×ε×q(A),A=,Ω m ( Ω ) = p ( Ω ) + k × ε × q ( Ω ) + k ( 1 − ε ) m(\Omega)=p(\Omega)+k\times\varepsilon\times q(\Omega)+k(1-\varepsilon) m(Ω)=p(Ω)+k×ε×q(Ω)+k(1ε) p ( A ) = ∑ A 1 ∩ A 2 ∩ ⋯ ∩ A n = A m 1 ( A 1 ) m 2 ( A 2 ) ⋯ m n ( A n ) p(A)=\sum_{A_1\cap A_2\cap\cdots\cap A_n=A}m_1(A_1)m_2(A_2)\cdots m_n(A_n) p(A)=A1A2An=Am1(A1)m2(A2)mn(An) q ( A ) = 1 n ∑ i = 1 n m i ( A ) q(A)=\frac{1}{n}\sum_{i=1}^{n}m_i(A) q(A)=n1i=1nmi(A) m ( A ) m(A) m(A) 又可写成如下形式: m ( A ) = ( 1 − k ) p ( A ) 1 − k + k × ε × q ( A ) m(A)=(1-k)\frac{p(A)}{1-k}+k\times\varepsilon\times q(A) m(A)=(1k)1kp(A)+k×ε×q(A) 式中第一项的 p ( A ) 1 − k \frac{p(A)}{1-k} 1kp(A) 是 DS 合成公式。

Example

(本示例采用前面 Yager 合成公式示例给出的数据)
k 12 = ∑ A 1 ∩ A 2 = ∅ m 1 ( A 1 ) m 2 ( A 2 ) = m 1 ( { A } ) m 2 ( { B } ) + m 1 ( { A } ) m 2 ( { C } ) + m 1 ( { B } ) m 2 ( { A } ) + m 1 ( { B } ) m 2 ( { C } ) + m 1 ( { C } ) m 2 ( { A } ) + m 1 ( { C } ) m 2 ( { B } ) = 0.99 k 13 = 1 − ∑ A 1 ∩ A 3 ≠ ∅ m 1 ( A 1 ) m 3 ( A 3 ) = 1 − [ m 1 ( { A } ) m 3 ( { A } ) + m 1 ( { B } ) m 3 ( { B } ) + m 1 ( { C } ) m 3 ( { C } ) ] = 0.117 k 23 = 0.901 k ^ = 2 n ( n − 1 ) ∑ i < j k i j = 2 3 × ( 3 − 1 ) ( 0.99 + 0.117 + 0.901 ) = 0.6693 ε = e − k ^ = 0.5120 m ( { A } ) = ( 1 − k ) p ( { A } ) 1 − k + k × ε × q ( { A } ) = 0 + 0.99901 × 0.5120 × 1 3 ( 0.98 + 0 + 0.9 ) = 0.3205 m ( { B } ) = ( 1 − k ) p ( { B } ) 1 − k + k × ε × q ( { B } ) = 0 + 0.99901 × 0.5120 × 1 3 ( 0.01 + 0.01 + 0 ) = 0.0034 m ( { C } ) = ( 1 − k ) p ( { C } ) 1 − k + k × ε × q ( { C } ) = ( 1 − 0.99901 ) × 1 + 0.99901 × 0.5120 × 1 3 ( 0.01 + 0.99 + 0.1 ) = 0.1885 m ( Ω ) = ( 1 − k ) p ( Ω ) 1 − k + k × ε × q ( Ω ) + k ( 1 − ε ) = 0 + 0 + 0.99901 × ( 1 − 0.5120 ) = 0.4875 \begin{aligned} k_{12}&=\sum_{A_1\cap A_2=\emptyset}m_1(A_1)m_2(A_2) \\ &=m_1(\{A\})m_2(\{B\})+m_1(\{A\})m_2(\{C\})+m_1(\{B\})m_2(\{A\})+m_1(\{B\})m_2(\{C\})+m_1(\{C\})m_2(\{A\})+m_1(\{C\})m_2(\{B\}) \\ &=0.99 \\ k_{13}&=1-\sum_{A_1\cap A_3\neq\emptyset}m_1(A_1)m_3(A_3) \\ &=1-[m_1(\{A\})m_3(\{A\})+m_1(\{B\})m_3(\{B\})+m_1(\{C\})m_3(\{C\})] \\ &=0.117 \\ k_{23}&=0.901 \\ \hat{k}&=\frac{2}{n(n-1)}\sum_{i<j}k_{ij} \\ &=\frac{2}{3\times(3-1)}(0.99+0.117+0.901) \\ &=0.6693 \\ \varepsilon&=e^{-\hat{k}}=0.5120 \\ m(\{A\})&=(1-k)\frac{p(\{A\})}{1-k}+k\times\varepsilon\times q(\{A\}) \\ &=0+0.99901\times0.5120\times\frac{1}{3}(0.98+0+0.9) \\ &=0.3205 \\ m(\{B\})&=(1-k)\frac{p(\{B\})}{1-k}+k\times\varepsilon\times q(\{B\}) \\ &=0+0.99901\times0.5120\times\frac{1}{3}(0.01+0.01+0) \\ &=0.0034 \\ m(\{C\})&=(1-k)\frac{p(\{C\})}{1-k}+k\times\varepsilon\times q(\{C\}) \\ &=(1-0.99901)\times1+0.99901\times0.5120\times\frac{1}{3}(0.01+0.99+0.1) \\ &=0.1885 \\ m(\Omega)&=(1-k)\frac{p(\Omega)}{1-k}+k\times\varepsilon\times q(\Omega)+k(1-\varepsilon) \\ &=0+0+0.99901\times(1-0.5120) \\ &=0.4875 \\ \end{aligned} k12k13k23k^εm({A})m({B})m({C})m(Ω)=A1A2=m1(A1)m2(A2)=m1({A})m2({B})+m1({A})m2({C})+m1({B})m2({A})+m1({B})m2({C})+m1({C})m2({A})+m1({C})m2({B})=0.99=1A1A3=m1(A1)m3(A3)=1[m1({A})m3({A})+m1({B})m3({B})+m1({C})m3({C})]=0.117=0.901=n(n1)2i<jkij=3×(31)2(0.99+0.117+0.901)=0.6693=ek^=0.5120=(1k)1kp({A})+k×ε×q({A})=0+0.99901×0.5120×31(0.98+0+0.9)=0.3205=(1k)1kp({B})+k×ε×q({B})=0+0.99901×0.5120×31(0.01+0.01+0)=0.0034=(1k)1kp({C})+k×ε×q({C})=(10.99901)×1+0.99901×0.5120×31(0.01+0.99+0.1)=0.1885=(1k)1kp(Ω)+k×ε×q(Ω)+k(1ε)=0+0+0.99901×(10.5120)=0.4875

Smets 合成公式

  Smets 认为证据源之间的冲突只能来自于对辨识框架的错误定义。这样,Smets 将冲突系数 k k k 保留不用,而不用于归一化。(论文[2]中用 m ( ∅ ) m(\emptyset) m() 表示 k k k,根据论文中给的示例来看 m ( ∅ ) m(\emptyset) m() 不表示空集的 bpa,空集的 bpa 依然是0,论文中的 ∅ \emptyset 被解释为一个或几个假设没有被考虑在最初的辨识框架中。但是这样合成后的 bpa 累加和会小于1。)公式定义如下: m ( A ) = ∑ A 1 ∩ A 2 ∩ A 3 ⋯ = A m 1 ( A 1 ) m 2 ( A 2 ) m 3 ( A 3 ) ⋯   , A ≠ ∅ k = ∑ A 1 ∩ A 2 ∩ A 3 ⋯ = ∅ m 1 ( A 1 ) m 2 ( A 2 ) m 3 ( A 3 ) ⋯ \begin{aligned} m(A)&=\sum_{A_1\cap A_2\cap A_3\cdots=A}m_1(A_1)m_2(A_2)m_3(A_3)\cdots,\quad A \neq\emptyset \\ \\ k&=\sum_{A_1\cap A_2\cap A_3\cdots=\emptyset}m_1(A_1)m_2(A_2)m_3(A_3)\cdots \end{aligned} m(A)k=A1A2A3=Am1(A1)m2(A2)m3(A3),A==A1A2A3=m1(A1)m2(A2)m3(A3)

Example

(本示例采用前面 Yager 合成公式示例给出的数据)
k = 0.99901 m ( { A } ) = 0 m ( { B } ) = 0 m ( { C } ) = 0.00099 m ( Ω ) = 0 m ( ∅ ) = 0 \begin{aligned} k&=0.99901 \\ m(\{A\})&=0 \\ m(\{B\})&=0 \\ m(\{C\})&=0.00099 \\ m(\Omega)&=0 \\ m(\emptyset)&=0 \\ \end{aligned} km({A})m({B})m({C})m(Ω)m()=0.99901=0=0=0.00099=0=0

Dubois and Prade 合成公式

  对于有两个证据源的问题,证据源1有子集(命题) A 1 A_1 A1,证据源2有子集 A 2 A_2 A2,当 A 1 ∩ A 2 = ∅ A_1\cap A_2=\emptyset A1A2= 时, m 1 ( A 1 ) ⋅ m 2 ( A 2 ) m_1(A_1)\cdot m_2(A_2) m1(A1)m2(A2) 被分配给子集 B ∪ C B\cup C BC。公式定义如下: m ( A ) = ∑ A 1 ∩ A 2 = A m 1 ( A 1 ) m 2 ( A 2 ) + ∑ A 1 ∪ A 2 = A , A 1 ∩ A 2 = ∅ m 1 ( A 1 ) m 2 ( A 2 ) m(A)=\sum_{A_1\cap A_2=A}m_1(A_1)m_2(A_2)+\sum_{A_1\cup A_2=A,A_1\cap A_2=\emptyset}m_1(A_1)m_2(A_2) m(A)=A1A2=Am1(A1)m2(A2)+A1A2=A,A1A2=m1(A1)m2(A2)

Example

Ω = { A , B , C } m 1 : m 1 ( { A } ) = 0.1 , m 1 ( { B } ) = 0.1 , m 1 ( { C } ) = 0.8 m 2 : m 2 ( { A } ) = 0.8 , m 2 ( { B } ) = 0.1 , m 2 ( { C } ) = 0.1 \begin{aligned} &\Omega=\{A,B,C\} &\quad &\quad \\ &m_1:m_1(\{A\})=0.1,& m_1(\{B\})=0.1,&\quad m_1(\{C\})=0.8 \\ &m_2:m_2(\{A\})=0.8,& m_2(\{B\})=0.1,&\quad m_2(\{C\})=0.1 \\ \end{aligned} Ω={A,B,C}m1:m1({A})=0.1,m2:m2({A})=0.8,m1({B})=0.1,m2({B})=0.1,m1({C})=0.8m2({C})=0.1 k = m 1 ( { A } ) m 2 ( { B } ) + m 1 ( { A } ) m 2 ( { C } ) + m 1 ( { B } ) m 2 ( { A } ) + m 1 ( { B } ) m 2 ( { C } ) + m 1 ( { C } ) m 2 ( { A } ) + m 1 ( { C } ) m 2 ( { B } ) = 0.1 × 0.1 + 0.1 × 0.1 + 0.1 × 0.8 + 0.1 × 0.1 + 0.8 × 0.8 + 0.8 × 0.1 = 0.83 m ( { A } ) = m 1 ( { A } ) m 2 ( { A } ) = 0.1 × 0.8 = 0.08 m ( { B } ) = 0.01 m ( { C } ) = 0.08 m ( { A , B } ) = ∑ A 1 ∩ A 2 = { A , B } m 1 ( A 1 ) m 2 ( A 2 ) + ∑ A 1 ∪ A 2 = { A , B } , A 1 ∩ A 2 = ∅ m 1 ( A 1 ) m 2 ( A 2 ) = 0 + m 1 ( { A } ) m 2 ( { B } ) + m 1 ( { B } ) m 2 ( { A } ) = 0 + 0.1 × 0.1 + 0.1 × 0.8 = 0.09 m ( { A , C } ) = 0 + m 1 ( { A } ) m 2 ( { C } ) + m 1 ( { C } ) m 2 ( { A } ) = 0 + 0.1 × 0.1 + 0.8 × 0.8 = 0.65 m ( { B , C } ) = 0 + m 1 ( { B } ) m 2 ( { C } ) + m 1 ( { C } ) m 2 ( { B } ) = 0 + 0.1 × 0.1 + 0.1 × 0.8 = 0.09 m ( { A , B , C } ) = 0 \begin{aligned} k&=m_1(\{A\})m_2(\{B\})+m_1(\{A\})m_2(\{C\})+m_1(\{B\})m_2(\{A\})+m_1(\{B\})m_2(\{C\})+m_1(\{C\})m_2(\{A\})+m_1(\{C\})m_2(\{B\}) \\ &= 0.1\times0.1+0.1\times0.1+0.1\times0.8+0.1\times0.1+0.8\times0.8+0.8\times0.1 \\ &=0.83 \\ m(\{A\})&=m_1(\{A\})m_2(\{A\}) \\ &=0.1\times0.8 \\ &=0.08 \\ m(\{B\})&=0.01 \\ m(\{C\})&=0.08 \\ m(\{A,B\})&= \sum_{A_1\cap A_2=\{A,B\}}m_1(A_1)m_2(A_2)+\sum_{A_1\cup A_2=\{A,B\},A_1\cap A_2=\emptyset}m_1(A_1)m_2(A_2) \\ &=0+m_1(\{A\})m_2(\{B\})+m_1(\{B\})m_2(\{A\}) \\ &=0+0.1\times0.1+0.1\times0.8 \\ &=0.09 \\ m(\{A,C\})&=0+m_1(\{A\})m_2(\{C\})+m_1(\{C\})m_2(\{A\}) \\ &=0+0.1\times0.1+0.8\times0.8 \\ &=0.65 \\ m(\{B,C\})&=0+m_1(\{B\})m_2(\{C\})+m_1(\{C\})m_2(\{B\}) \\ &=0+0.1\times0.1+0.1\times0.8 \\ &=0.09 \\ m(\{A,B,C\})&=0 \end{aligned} km({A})m({B})m({C})m({A,B})m({A,C})m({B,C})m({A,B,C})=m1({A})m2({B})+m1({A})m2({C})+m1({B})m2({A})+m1({B})m2({C})+m1({C})m2({A})+m1({C})m2({B})=0.1×0.1+0.1×0.1+0.1×0.8+0.1×0.1+0.8×0.8+0.8×0.1=0.83=m1({A})m2({A})=0.1×0.8=0.08=0.01=0.08=A1A2={A,B}m1(A1)m2(A2)+A1A2={A,B},A1A2=m1(A1)m2(A2)=0+m1({A})m2({B})+m1({B})m2({A})=0+0.1×0.1+0.1×0.8=0.09=0+m1({A})m2({C})+m1({C})m2({A})=0+0.1×0.1+0.8×0.8=0.65=0+m1({B})m2({C})+m1({C})m2({B})=0+0.1×0.1+0.1×0.8=0.09=0

Discounting and Dempster 合成公式

  该方法先给每个证据源分配一个表示信任度的系数 α \alpha α,用 m α i , i m_{\alpha_i,i} mαi,i 表示第 i i i 个证据源被折扣后的基本概率分配函数。公式定义如下: m α i , i ( A ) = α i m i ( A ) , A ≠ Ω m_{\alpha_i,i}(A)=\alpha_im_i(A),\quad A \neq \Omega mαi,i(A)=αimi(A),A=Ω m α i , i ( Ω ) = 1 − α i + α i m i ( Ω ) m_{\alpha_i,i}(\Omega)=1-\alpha_i+\alpha_im_i(\Omega) mαi,i(Ω)=1αi+αimi(Ω) 然后采用 DS 合成公式合成各证据源的 m α i , i m_{\alpha_i,i} mαi,i
  当 α i = 0 \alpha_i=0 αi=0 时,表示第 i i i 个证据源有问题,不信任它;当 α i = 1 \alpha_i=1 αi=1 时,表示完全信任第 i i i 个证据源。

Example

(本示例采用前面 Dubois and Prade 合成公式示例给出的数据, α 1 = 0.2 \alpha_1=0.2 α1=0.2 α 2 = 0.8 \alpha_2=0.8 α2=0.8
m 0.2 , 1 : m 0.2 , 1 ( { A } ) = 0.02 , m 0.2 , 1 ( { B } ) = 0.02 , m 0.2 , 1 ( { C } ) = 0.16 , m 0.2 , 1 ( Ω ) = 0.8 m 0.8 , 2 : m 0.8 , 2 ( { A } ) = 0.64 , m 0.8 , 2 ( { B } ) = 0.08 , m 0.8 , 2 ( { C } ) = 0.08 , m 0.8 , 2 ( Ω ) = 0.2 \begin{aligned} &m_{0.2,1}:m_{0.2,1}(\{A\})=0.02,& m_{0.2,1}(\{B\})=0.02,&\quad m_{0.2,1}(\{C\})=0.16,\quad m_{0.2,1}(\Omega)=0.8 \\ &m_{0.8,2}:m_{0.8,2}(\{A\})=0.64,& m_{0.8,2}(\{B\})=0.08,&\quad m_{0.8,2}(\{C\})=0.08,\quad m_{0.8,2}(\Omega)=0.2 \\ \end{aligned} m0.2,1:m0.2,1({A})=0.02,m0.8,2:m0.8,2({A})=0.64,m0.2,1({B})=0.02,m0.8,2({B})=0.08,m0.2,1({C})=0.16,m0.2,1(Ω)=0.8m0.8,2({C})=0.08,m0.8,2(Ω)=0.2 k = m 0.2 , 1 ( { A } ) m 0.8 , 2 ( { B } ) + m 0.2 , 1 ( { A } ) m 0.8 , 2 ( { C } ) + m 0.2 , 1 ( { B } ) m 0.8 , 2 ( { A } ) + m 0.2 , 1 ( { B } ) m 0.8 , 2 ( { C } ) + m 0.2 , 1 ( { C } ) m 0.8 , 2 ( { A } ) + m 0.2 , 1 ( { C } ) m 0.8 , 2 ( { B } ) = 0.02 × 0.08 + 0.02 × 0.08 + 0.02 × 0.64 + 0.02 × 0.08 + 0.16 × 0.64 + 0.16 × 0.08 = 0.1328 m ( { A } ) = m 0.2 , 1 ( { A } ) m 0.8 , 2 ( { A } ) + m 0.2 , 1 ( { A } ) m 0.8 , 2 ( Ω ) + m 0.2 , 1 ( Ω ) m 0.8 , 2 ( { A } ) 1 − k = 0.02 × 0.64 + 0.02 × 0.2 + 0.8 × 0.64 1 − 0.1328 = 0.6098 m ( { B } ) = m 0.2 , 1 ( { B } ) m 0.8 , 2 ( { B } ) + m 0.2 , 1 ( { B } ) m 0.8 , 2 ( Ω ) + m 0.2 , 1 ( Ω ) m 0.8 , 2 ( { B } ) 1 − k = 0.02 × 0.08 + 0.02 × 0.2 + 0.8 × 0.08 1 − 0.1328 = 0.0803 m ( { C } ) = m 0.2 , 1 ( { C } ) m 0.8 , 2 ( { C } ) + m 0.2 , 1 ( { C } ) m 0.8 , 2 ( Ω ) + m 0.2 , 1 ( Ω ) m 0.8 , 2 ( { C } ) 1 − k = 0.16 × 0.08 + 0.16 × 0.2 + 0.8 × 0.08 1 − 0.1328 = 0.1255 m ( Ω ) = m 0.2 , 1 ( Ω ) m 0.8 , 2 ( Ω ) 1 − k = 0.8 × 0.2 1 − 0.1328 = 0.1845 \begin{aligned} k&=m_{0.2,1}(\{A\})m_{0.8,2}(\{B\})+m_{0.2,1}(\{A\})m_{0.8,2}(\{C\})+m_{0.2,1}(\{B\})m_{0.8,2}(\{A\})+m_{0.2,1}(\{B\})m_{0.8,2}(\{C\})+m_{0.2,1}(\{C\})m_{0.8,2}(\{A\})+m_{0.2,1}(\{C\})m_{0.8,2}(\{B\}) \\ &= 0.02\times0.08+0.02\times0.08+0.02\times0.64+0.02\times0.08+0.16\times0.64+0.16\times0.08 \\ &=0.1328\\ m(\{A\})&=\frac{m_{0.2,1}(\{A\})m_{0.8,2}(\{A\})+m_{0.2,1}(\{A\})m_{0.8,2}(\Omega)+m_{0.2,1}(\Omega)m_{0.8,2}(\{A\})}{1-k} \\ &=\frac{0.02\times0.64+0.02\times0.2+0.8\times0.64}{1-0.1328} \\ &=0.6098 \\ m(\{B\})&=\frac{m_{0.2,1}(\{B\})m_{0.8,2}(\{B\})+m_{0.2,1}(\{B\})m_{0.8,2}(\Omega)+m_{0.2,1}(\Omega)m_{0.8,2}(\{B\})}{1-k} \\ &=\frac{0.02\times0.08+0.02\times0.2+0.8\times0.08}{1-0.1328} \\ &=0.0803\\ m(\{C\})&=\frac{m_{0.2,1}(\{C\})m_{0.8,2}(\{C\})+m_{0.2,1}(\{C\})m_{0.8,2}(\Omega)+m_{0.2,1}(\Omega)m_{0.8,2}(\{C\})}{1-k} \\ &=\frac{0.16\times0.08+0.16\times0.2+0.8\times0.08}{1-0.1328} \\ &=0.1255\\ m(\Omega)&=\frac{m_{0.2,1}(\Omega)m_{0.8,2}(\Omega)}{1-k} \\ &=\frac{0.8\times0.2}{1-0.1328} \\ &=0.1845 \\ \end{aligned} km({A})m({B})m({C})m(Ω)=m0.2,1({A})m0.8,2({B})+m0.2,1({A})m0.8,2({C})+m0.2,1({B})m0.8,2({A})+m0.2,1({B})m0.8,2({C})+m0.2,1({C})m0.8,2({A})+m0.2,1({C})m0.8,2({B})=0.02×0.08+0.02×0.08+0.02×0.64+0.02×0.08+0.16×0.64+0.16×0.08=0.1328=1km0.2,1({A})m0.8,2({A})+m0.2,1({A})m0.8,2(Ω)+m0.2,1(Ω)m0.8,2({A})=10.13280.02×0.64+0.02×0.2+0.8×0.64=0.6098=1km0.2,1({B})m0.8,2({B})+m0.2,1({B})m0.8,2(Ω)+m0.2,1(Ω)m0.8,2({B})=10.13280.02×0.08+0.02×0.2+0.8×0.08=0.0803=1km0.2,1({C})m0.8,2({C})+m0.2,1({C})m0.8,2(Ω)+m0.2,1(Ω)m0.8,2({C})=10.13280.16×0.08+0.16×0.2+0.8×0.08=0.1255=1km0.2,1(Ω)m0.8,2(Ω)=10.13280.8×0.2=0.1845

Murphy 合成公式

  设有 n n n 个证据源,该方法先将 n n n 个证据源的 bpa 取平均得到 m a v g m_{avg} mavg,再用 DS 合成公式对 m a v g m_{avg} mavg 迭代 ( n − 1 ) (n-1) (n1) 次得到合成后的 bpa。令 f D S ( S 1 , S 2 ) f_{DS}(S_1,S_2) fDS(S1,S2) 表示两个证据源的 DS 合成公式, m i m^i mi 表示第 i i i 次迭代后的 bpa,则 Murphy 合成公式定义如下: m 1 = f D S ( m a v g , m a v g ) m^1=f_{DS}(m_{avg},m_{avg}) m1=fDS(mavg,mavg) m i = f D S ( m i − 1 , m a v g ) , i ≥ 2 m^i=f_{DS}(m^{i-1},m_{avg}),\quad i \geq2 mi=fDS(mi1,mavg),i2

Example

Ω = { A , B , C } m 1 : m 1 ( { A } ) = 0.5 , m 1 ( { B , C } ) = 0.5 , m 2 : m 2 ( { C } ) = 0.5 , m 2 ( { A , B } ) = 0.5 \begin{aligned} &\Omega=\{A,B,C\} \\ &m_1:m_1(\{A\})=0.5,& m_1(\{B,C\})=0.5, \\ &m_2:m_2(\{C\})=0.5,& m_2(\{A,B\})=0.5 \\ \end{aligned} Ω={A,B,C}m1:m1({A})=0.5,m2:m2({C})=0.5,m1({B,C})=0.5,m2({A,B})=0.5 m a v g ( { A } ) = m a v g ( { C } ) = m a v g ( { A , B } ) = m a v g ( { B , C } ) = 0.25 m_{avg}(\{A\})=m_{avg}(\{C\})=m_{avg}(\{A,B\})=m_{avg}(\{B,C\})=0.25 mavg({A})=mavg({C})=mavg({A,B})=mavg({B,C})=0.25
k = m a v g ( { A } ) m a v g ( { C } ) + m a v g ( { A } ) m a v g ( { B , C } ) + m a v g ( { C } ) m a v g ( { A } ) + m a v g ( { C } ) m a v g ( { A , B } ) + m a v g ( { A , B } ) m a v g ( { C } ) + m a v g ( { B , C } ) m a v g ( { A } ) = 0.25 × 0.25 × 6 = 0.375 m ( { A } ) = m a v g ( { A } ) m a v g ( { A } ) + m a v g ( { A } ) m a v g ( { A , B } ) + m a v g ( { A , B } ) m a v g ( { A } ) 1 − k = 0.25 × 0.25 × 3 1 − 0.375 = 0.3 m ( { B } ) = m a v g ( { A , B } ) m a v g ( { B , C } ) + m a v g ( { B , C } ) m a v g ( { A , B } ) 1 − k = 0.25 × 0.25 × 2 1 − 0.375 = 0.2 m ( { C } ) = m a v g ( { C } ) m a v g ( { C } ) + m a v g ( { C } ) m a v g ( { B , C } ) + m a v g ( { B , C } ) m a v g ( { C } ) 1 − k = 0.25 × 0.25 × 3 1 − 0.375 = 0.3 m ( { A , B } ) = m a v g ( { A , B } ) m a v g ( { A , B } ) 1 − k = 0.25 × 0.25 1 − 0.375 = 0.1 m ( { B , C } ) = m a v g ( { B , C } ) m a v g ( { B , C } ) 1 − k = 0.25 × 0.25 1 − 0.375 = 0.1 \begin{aligned} k&=m_{avg}(\{A\})m_{avg}(\{C\})+m_{avg}(\{A\})m_{avg}(\{B,C\})+m_{avg}(\{C\})m_{avg}(\{A\})+m_{avg}(\{C\})m_{avg}(\{A,B\})+m_{avg}(\{A,B\})m_{avg}(\{C\})+m_{avg}(\{B,C\})m_{avg}(\{A\}) \\ &=0.25\times0.25\times6 \\ &=0.375 \\ m(\{A\})&=\frac{m_{avg}(\{A\})m_{avg}(\{A\})+m_{avg}(\{A\})m_{avg}(\{A,B\})+m_{avg}(\{A,B\})m_{avg}(\{A\})}{1-k} \\ &=\frac{0.25\times0.25\times3}{1-0.375} \\ &=0.3 \\ m(\{B\})&=\frac{m_{avg}(\{A,B\})m_{avg}(\{B,C\})+m_{avg}(\{B,C\})m_{avg}(\{A,B\})}{1-k} \\ &=\frac{0.25\times0.25\times2}{1-0.375} \\ &=0.2 \\ m(\{C\})&=\frac{m_{avg}(\{C\})m_{avg}(\{C\})+m_{avg}(\{C\})m_{avg}(\{B,C\})+m_{avg}(\{B,C\})m_{avg}(\{C\})}{1-k} \\ &=\frac{0.25\times0.25\times3}{1-0.375} \\ &=0.3 \\ m(\{A,B\})&=\frac{m_{avg}(\{A,B\})m_{avg}(\{A,B\})}{1-k} \\ &=\frac{0.25\times0.25}{1-0.375} \\ &=0.1 \\ m(\{B,C\})&=\frac{m_{avg}(\{B,C\})m_{avg}(\{B,C\})}{1-k} \\ &=\frac{0.25\times0.25}{1-0.375} \\ &=0.1 \\ \end{aligned} km({A})m({B})m({C})m({A,B})m({B,C})=mavg({A})mavg({C})+mavg({A})mavg({B,C})+mavg({C})mavg({A})+mavg({C})mavg({A,B})+mavg({A,B})mavg({C})+mavg({B,C})mavg({A})=0.25×0.25×6=0.375=1kmavg({A})mavg({A})+mavg({A})mavg({A,B})+mavg({A,B})mavg({A})=10.3750.25×0.25×3=0.3=1kmavg({A,B})mavg({B,C})+mavg({B,C})mavg({A,B})=10.3750.25×0.25×2=0.2=1kmavg({C})mavg({C})+mavg({C})mavg({B,C})+mavg({B,C})mavg({C})=10.3750.25×0.25×3=0.3=1kmavg({A,B})mavg({A,B})=10.3750.25×0.25=0.1=1kmavg({B,C})mavg({B,C})=10.3750.25×0.25=0.1

参考文献

[1] 孙全, 叶秀清, 顾伟康. 一种新的基于证据理论的合成公式[J]. 电子学报, 2000, 28(8):117-119.
[2] Lefevre E , Colot O , Vannoorenberghe P . Belief function combination and conflict management[J]. Information Fusion, 2002, 3(2):149-162.
[3] Murphy C K . Combining belief functions when evidence conflicts[J]. Decision Support Systems, 2000.
  • 20
    点赞
  • 110
    收藏
    觉得还不错? 一键收藏
  • 5
    评论
### 回答1: DS证据理论(Dempster-Shafer Theory of Evidence)是一种用于处理不确定性和不完整信息的数学理论。在DS证据理论中,将每个证据看作一个“证据支持度函数”,它表示该证据对不同假设的支持程度。通过合并不同证据的支持度函数,可以得到一个综合的支持度函数,从而得出最终的结论。 对于两个证据支持度函数A和B,它们的合成可以通过Dempster's rule进行计算。Dempster's rule是DS证据理论的核心公式之一,计算方式如下: 1. 计算A和B的交集,即A和B同时支持的假设的支持度。 2. 计算A和B的并集,即A和B支持的所有假设的支持度。 3. 计算A和B的冲突度量,即A和B支持的假设有多少是不一致的。 4. 根据冲突度量对支持度进行修正,得到综合的支持度函数。 通过Dempster's rule合成证据支持度函数,可以将不同证据的信息进行整合,得到更准确的结果。 ### 回答2: DS证据理论(Dempster-Shafer evidence theory)是一种用于合成不确定性证据的推理方法,它可以将多种证据的结果组合成一个综合的结果。其合成过程主要分为三个步骤:基本概率分配、合成规则和极大似然法。 首先,基本概率分配是将每种证据的不确定性量化成为基本概率分配函数(Basic Probability Mass Function,简称BPMF)的过程。基本概率分配是将确定性和不确定性合理地分配到每个可能的事件上。通过考虑证据对于每种可能事件的置信度,可以为每个事件分配一个权重。 接下来,合成规则是将多种证据的基本概率分配函数进行合并的过程。DS证据理论采用的主要合成规则是Dempster's combination rule。该规则通过计算不同证据的交叉影响度量来确定每个事件的最终概率。合成规则不仅考虑了证据证据力量,还考虑了证据之间的可能互斥和相互依赖关系。 最后,极大似然法是一种使用DS证据理论的附加方法,用于消除证据中的冲突。通过寻找使得合成结果达到最大的某种证据分配,可以确定最终的结果。这种方法在证据之间存在矛盾或不一致时,可以让合成结果更加准确。 总而言之,DS证据理论通过基本概率分配、合成规则和极大似然法的综合运用,可以将多种证据结果合成为一个综合的结果。这种合成方法使得对不确定性的推理更加准确和可靠,为决策和推断提供了重要的工具。 ### 回答3: DS证据理论是一种用于合成两种证据结果的方法,它综合了Dempster-Shafer理论证据理论的思想。DS证据理论基于概率推理和不确定性理论,通过量化和融合不同证据的不确定性来得出最终的结果。 在DS证据理论中,每一种证据都表示为一个信任分布函数,用来表示该证据对不同假设的支持程度。这个信任分布函数表示了证据支持某种假设的程度,其中每个假设的支持程度由一个置信度表示。 合成两种证据结果的过程可以分为两个主要步骤: 1. 信任度传播:首先,将每种证据的置信度按照一定规则进行组合,得到每个假设的信任度。这个规则可以是Dempster规则,它基于可能性和不可能性的计算,将两种证据的置信度进行合并。在这个阶段,两种证据的置信度被传播到所有可能的假设上。 2. 阈值设置:根据使用者设定的阈值,对所有可能的假设进行筛选,选出最合理的结果。这个过程可以根据需求进行调整,根据不同的应用场景来设置不同的阈值。 DS证据理论的优点是能够将不同证据的不确定性进行量化,以及能够进行合理的融合和推理。它适用于处理不完全和不确定的信息,为决策提供了一种有效的方法。然而,DS证据理论也存在一些限制,比如需要准确设定置信度和阈值,否则结果可能不准确。此外,证据之间的关联性也会对结果产生影响。 总而言之,DS证据理论通过将两种证据的置信度进行合成,量化和融合了不同证据的不确定性,以得出合理的结果。它在处理不完全和不确定性信息时具有一定的优势,但需要准确设定相关参数。
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值