Pytorch—时序数据的加载与简单处理

该博客介绍了如何使用PyTorch处理时序数据,包括从华盛顿特区共享汽车交易数据集中加载数据,使用一热编码处理第9列天气信息,并进行min-max和z-score缩放。数据首先被转换为Tensor,然后通过重塑和转置进行处理,以适应模型输入。最后,展示了缩放操作的示例。
摘要由CSDN通过智能技术生成

数据集介绍

使用的数据集为美国华盛顿特区共享汽车交易数据, 可从链接下载。

Load data

# -*- coding: utf-8 -*-
import os
import numpy as np
import torch as th
'''
    masterqkk, 20210420
'''
data_path = '../Dataset'
data_name = 'hour.csv'
data_np = np.loadtxt(os.path.join(data_path, data_name), delimiter=',', skiprows=1, converters={1: lambda x: float(x.decode().split('/')[-1])}, dtype=np.float32)
data_t = th.from_numpy(data_np)
print('data_t: {}, {}, {}'.format(data_t, data_t.shape, data_t.stride()))

encoding 9-th col (weather) using one-hot.

first_day = data_t[:24, :].long()
weather_onehot = th.zeros(size=(first_day.shape[0], 4))
weather_onehot.scatter_(dim=1,
                        index=first_day[:, 9].unsqueeze(1) - 1,
                        value=1.0
                        )
print('weather_onehot: {}, {}'.format(weather_onehot, weather_onehot.shape))
first_day_onehot = th.cat((first_day, weather_onehot), 1)[:1, :]
print('first_day_onehot: {}, {}'.format(first_day_onehot, first_day_onehot.shape))

hour_day = 24
daily_data = data_t.view(-1, hour_day, data_t.shape[1]) # (N, L, C)
print('daily_data: {}, {}'.format(daily_data.shape, daily_data.stride()))
daily_data = daily_data.transpose(1, 2) # (N, C, L)
print('daily_data: {}, {}'.format(daily_data.shape, daily_data.stride()))
weather_onehot2 = th.zeros(size=(daily_data.shape[0], 4, daily_data.shape[2]))
weather_onehot2.scatter_(dim=1,
                      index=daily_data[:, 9, :].long().unsqueeze(1) - 1,
                      value=1.0
                         )
daily_data_onehot = th.cat((daily_data, weather_onehot2), dim=1)
print('daily_data_onehot: {}, {}'.format(daily_data_onehot, daily_data_onehot.shape))

scaling (minmax, zscore)

tmp = daily_data[:, 10, :].clone()
tmp = (tmp - th.min(tmp)) / (th.max(tmp) -th.min(tmp))
print('minmax scaling: {}'.format(tmp))
tmp2 = daily_data[:, 10, :].clone()
tmp2 = (tmp2 - th.mean(tmp2)) / th.std(tmp2)
print('zscore scaling: {}'.format(tmp2))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MasterQKK 被注册

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值