【cuda编程】CUDA中的atomic原子操作

博客主要介绍了CUDA的原子操作,它是对变量操作的最小执行单位,能实现多线程间共享内存的读写保护,确保操作结果正确。还详细阐述了加法、减法、交换等11种原子操作的具体内容,如读取地址处字、操作及返回结果等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


所谓原子操作,就是该操作绝不会在执行完毕前被任何其他任务或事件打断,也就说,它的 最小的执行单位,不可能有比它更小的执行单位。

CUDA的原子操作可以理解为对一个变量进行“读取-修改-写入”这三个操作的一个最小单位的执行过程。在它执行过程中,不允许其他并行线程对该变量进行读取和写入的操作。基于这个机制,原子操作实现了在多个线程间共享的变量的互斥保护,确保任何一次对变量的操作的结果的正确性。

原子操作确保了在多个并行线程间共享的内存的读写保护,每次只能有一个线程对该变量进行读写操作,一个线程对该变量操作的时候,其他线程如果也要操作该变量,只能等待前一线程执行完成。原子操作确保了安全,代价是牺牲了性能

1. 加法操作——atomicAdd()

读取位于全局或共享存储器中地址address 处的32 位或64 位字old,计算(old + val),并将结果存储在存储器的同一地址中。这三项操作在一次原子事务中执行。该函数将返回old。只有全局存储器支持64 位字。

int atomicAdd(int* address, int val);
unsigned int atomicAdd(unsigned int* address,unsigned int val);
unsigned long long int atomicAdd(unsigned long long int* address,unsigned long long int val);

代码举例:

#include <stdio.h>    
#include <stdlib.h>   
#include <cuda_runtime.h>  

__global__ void histo_kernel(unsigned int *histo)
{
    int atomic_value = atomicAdd(histo, 1);
    printf("atomic_value:%d, histo: %d\n", atomic_value, *histo);
}

int main(void)
{
	int threadSum = 3;

	//分配内存并拷贝初始数据
	unsigned int *dev_histo;

	cudaMalloc((void**)&dev_histo, sizeof(int));
	cudaMemcpy(dev_histo, &threadSum, sizeof(int), cudaMemcpyHostToDevice);

	histo_kernel <<<1,1 >>> (dev_histo);

	//数据拷贝回CPU内存
	cudaMemcpy(&threadSum, dev_histo, sizeof(int), cudaMemcpyDeviceToHost);
	cudaFree(dev_histo);
	return 0;
}

输出:

atomic_value:3, histo: 4

2. 减法操作——atomicSub()

读取位于全局或共享存储器中地址address 处的32 位字old,计算(old - val),并将结果存储在存储器的同一地址中。这三项操作在一次原子事务中执行。该函数将返回old

int atomicSub(int* address, int val);
unsigned int atomicSub(unsigned int* address, unsigned int val);

3. 交换操作——atomicExch()

读取位于全局或共享存储器中地址address 处的32 位或64 位字old,并将val 存储在存储器的同一地址中。这两项操作在一次原子事务中执行。该函数将返回old。只有全局存储器支持64 位字。

int atomicExch(int* address, int val);
unsigned int atomicExch(unsigned int* address,unsigned int val);
unsigned long long int atomicExch(unsigned long long int* address,unsigned long long int val);
float atomicExch(float* address, float val);

4. 最小值操作——atomicMin()

读取位于全局或共享存储器中地址address 处的32 位字old,计算old 和val 的最小值,并将结果存储在存储器的同一地址中。这三项操作在一次原子事务中执行。该函数将返回old

int atomicMin(int* address, int val);
unsigned int atomicMin(unsigned int* address,unsigned int val);

5. 最大值操作——atomicMax()

读取位于全局或共享存储器中地址address 处的32 位字old,计算old 和val 的最大值,并将结果存储在存储器的同一地址中。这三项操作在一次原子事务中执行。该函数将返回old

int atomicMax(int* address, int val);
unsigned int atomicMax(unsigned int* address,unsigned int val);

6. 增量操作——atomicInc()

读取位于全局或共享存储器中地址address 处的32 位字old,计算 ((old >= val) ? 0 : (old+1)),并将结果存储在存储器的同一地址中。这三项操作在一次原子事务中执行。该函数将返回old

unsigned int atomicInc(unsigned int* address,unsigned int val);

7. 减量操作——atomicDec()

读取位于全局或共享存储器中地址address 处的32 位字old,计算 (((old == 0) | (old > val)) ? val : (old-1)),并将结果存储在存储器的同一地址中。这三项操作在一次原子事务中执行。该函数将返回old

unsigned int atomicDec(unsigned int* address,unsigned int val);

8. 比较并交换——atomicCAS()

读取位于全局或共享存储器中地址address 处的32 位或64 位字old,计算 (old == compare ? val : old),并将结果存储在存储器的同一地址中。这三项操作在一次原子事务中执行。该函数将返回old(比较并交换)。只有全局存储器支持64 位字。

int atomicCAS(int* address, int compare, int val);
unsigned int atomicCAS(unsigned int* address,unsigned int compare,unsigned int val);
unsigned long long int atomicCAS(unsigned long long int* address,unsigned long long int compare,unsigned long long int val);

9. 与操作——atomicAnd()

读取位于全局或共享存储器中地址address 处的32 位字old,计算 (old & val),并将结果存储在存储器的同一地址中。这三项操作在一次原子事务中执行。该函数将返回old

int atomicAnd(int* address, int val);
unsigned int atomicAnd(unsigned int* address,unsigned int val);

10. 或操作——atomicOr()

读取位于全局或共享存储器中地址address 处的32 位字old,计算 (old | val),并将结果存储在存储器的同一地址中。这三项操作在一次原子事务中执行。该函数将返回old

int atomicOr(int* address, int val);
unsigned int atomicOr(unsigned int* address,unsigned int val);

11. 异或操作——atomicXor()

读取位于全局或共享存储器中地址address 处的32 位字old,计算 (old ^ val),并将结果存储在存储器的同一地址中。这三项操作在一次原子事务中执行。该函数将返回old

int atomicXor(int* address, int val);
unsigned int atomicXor(unsigned int* address,unsigned int val);
CUDA原子操作和规约是在CUDA编程中常用的技术。原子操作是一种特殊的操作,可以确保多个线程同时访问共享内存时的数据一致性。CUDA提供了多种原子操作函数,如原子加法函数,可以在并行计算中实现线程间的同步和数据的安全更新。\[3\] 规约是一种常见的并行计算技术,用于将一个数组中的元素通过某种操作进行合并,得到一个最终的结果。在CUDA中,规约操作可以用于求和、求最大值、求最小值等。CUDA提供了多种规约算法,如交叉配对规约、交错配对规约、处理两个block数据规约、循环展开等。这些算法可以根据具体的需求选择使用。\[1\] 在CUDA编程中,使用原子操作和规约可以提高并行计算的效率和准确性。然而,需要注意的是,在进行规约操作时,必须确保每个步骤的所有线程是同步的,也就是说,所有线程计算完成之后再进入下一步骤的计算,否则会导致结果错误。\[2\]因此,在编写CUDA程序时,需要仔细考虑线程同步的问题,以确保正确的结果。 #### 引用[.reference_title] - *1* [CUDA----规约](https://blog.csdn.net/UCAS_HMM/article/details/126543251)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [CUDA加速——基于规约思想的数组元素求和](https://blog.csdn.net/shandianfengfan/article/details/120407846)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [CUDA学习(十一):原子操作实现向量内积](https://blog.csdn.net/hjxu2016/article/details/109816989)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非晚非晚

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值