XGBRegressor参数详解以及调参过程
一、参数
XGBRegressor(max_depth=30, learning_rate=0.01, n_estimators=5,
silent=True, objective=‘reg:linear’, booster=‘gblinear’, n_jobs=50,
nthread=None, gamma=0, min_child_weight=1, max_delta_step=0, subsample=1,
colsample_bytree=1, colsample_bylevel=1, reg_alpha=0, reg_lambda=1,
scale_pos_weight=1, base_score=0.5, random_state=0, seed=None,
missing=None, importance_type=‘gain’)
本文详细介绍了XGBoost的XGBRegressor参数,包括booster、nthread、objective、eval_metric等,并提供了调参的顺序和方法,如选择合适的学习速率、调整决策树参数max_depth、min_child_weight、gamma、subsample、colsample_bytree,以及正则化参数lambda和alpha。调参过程中,建议每次只调整一到两个超参数,以找到最佳配置。

订阅专栏 解锁全文
5104

被折叠的 条评论
为什么被折叠?



