雨天道路目标检测数据集 3600张 雨天 带标注 voc yolo
白天
分类名: (图片张数, 标注个数)
car: (1134, 10528)
truck: (394, 722)
person: (387, 1585)
rider: (47, 56)
bike: (64, 86) .
bus:(187, 256)
motor :(29,32)
总数: (1150, 13265)
总类(nc): 7类
晚上
分类名: (图片张数, 标注个数)
car: (2470, 21655)
truck: (384, 499)
per son:(510, 1532)
bus: (220, 248)
bike: (76, 121)
rider: (64, 71)
motor: (43, 49)
总数: (2494, 24175)
总类(nc): 7类
构建一个基于YOLOv8模型的雨天道路目标检测系统。我们将使用PyTorch 1.10.0,并提供两个主要程序:一个是train.py
,用于训练模型;另一个是predict.py
,用于加载训练好的模型并进行预测。
1. 环境准备
首先,确保你已经安装了所需的依赖项。你可以使用以下命令安装这些依赖项:
pip install torch==1.10.0 torchvision matplotlib opencv-python ultralytics
2. 数据集准备
假设你的数据集已经准备好,并且分为训练集和验证集。数据集目录结构如下:
rainy_road_dataset/
├── images/
│ ├── train_day/
│ ├── val_day/
│ ├── train_night/
│ └── val_night/
├── labels_voc/
│ ├── train_day/
│ ├── val_day/
│ ├── train_night/
│ └── val_night/
├── labels_yolo/
│ ├── train_day/
│ ├── val_day/
│ ├── train_night/
│ └── val_night/
└── data.yaml
3. 数据集配置文件 (data.yaml
)
创建一个data.yaml
文件,配置数据集的路径和类别信息:
path: ./rainy_road_dataset # 数据集路径
train_day: images/train_day # 白天训练集图像路径
val_day: images/val_day # 白天验证集图像路径
train_night: images/train_night # 晚上训练集图像路径
val_night: images/val_night # 晚上验证集图像路径
nc: 7 # 类别数
names: ['car', 'truck', 'person', 'rider', 'bike', 'bus', 'motor'] # 类别名称
4. 转换标注格式
假设标注文件是VOC格式的XML文件,我们需要将它们转换为YOLO格式的TXT文件。
转换脚本
import xml.etree.ElementTree as ET
import os
def convert_voc_to_yolo(voc_file, yolo_file, class_names):
tree = ET.parse(voc_file)
root = tree.getroot()
width = int(root.find('size/width').text)
height = int(root.find('size/height').text)
with open(yolo_file, 'w') as f:
for obj in root.findall('object'):
class_name = obj.find('name').text
if class_name not in class_names:
continue
class_id = class_names.index(class_name)
bbox = obj.find('bndbox')
x_min = float(bbox.find('xmin').text)
y_min = float(bbox.find('ymin').text)
x_max = float(bbox.find('xmax').text)
y_max = float(bbox.find('ymax').text)
x_center = (x_min + x_max) / 2.0 / width
y_center = (y_min + y_max) / 2.0 / height
w = (x_max - x_min) / width
h = (y_max - y_min) / height
f.write(f"{class_id} {x_center} {y_center} {w} {h}\n")
def convert_all_voc_to_yolo(voc_dir, yolo_dir, class_names):
os.makedirs(yolo_dir, exist_ok=True)
for filename in os.listdir(voc_dir):
if filename.endswith('.xml'):
voc_file = os.path.join(voc_dir, filename)
yolo_file = os.path.join(yolo_dir, filename.replace('.xml', '.txt'))
convert_voc_to_yolo(voc_file, yolo_file, class_names)
if __name__ == "__main__":
class_names = ['car', 'truck', 'person', 'rider', 'bike', 'bus', 'motor']
voc_train_day_dir = 'rainy_road_dataset/labels_voc/train_day'
yolo_train_day_dir = 'rainy_road_dataset/labels_yolo/train_day'
convert_all_voc_to_yolo(voc_train_day_dir, yolo_train_day_dir, class_names)
voc_val_day_dir = 'rainy_road_dataset/labels_voc/val_day'
yolo_val_day_dir = 'rainy_road_dataset/labels_yolo/val_day'
convert_all_voc_to_yolo(voc_val_day_dir, yolo_val_day_dir, class_names)
voc_train_night_dir = 'rainy_road_dataset/labels_voc/train_night'
yolo_train_night_dir = 'rainy_road_dataset/labels_yolo/train_night'
convert_all_voc_to_yolo(voc_train_night_dir, yolo_train_night_dir, class_names)
voc_val_night_dir = 'rainy_road_dataset/labels_voc/val_night'
yolo_val_night_dir = 'rainy_road_dataset/labels_yolo/val_night'
convert_all_voc_to_yolo(voc_val_night_dir, yolo_val_night_dir, class_names)
5. 训练脚本 (train.py
)
from ultralytics import YOLO
def train_model(data_yaml_path, model_config, epochs, batch_size, img_size, augment):
# 加载模型
model = YOLO(model_config)
# 训练模型
results = model.train(
data=data_yaml_path,
epochs=epochs,
batch=batch_size,
imgsz=img_size,
augment=augment
)
# 保存模型
model.save("runs/train/rainy_road/best.pt")
if __name__ == "__main__":
data_yaml_path = 'rainy_road_dataset/data.yaml'
model_config = 'yolov8n.yaml'
epochs = 100
batch_size = 16
img_size = 640
augment = True
train_model(data_yaml_path, model_config, epochs, batch_size, img_size, augment)
6. 预测脚本 (predict.py
)
import cv2
import torch
from ultralytics import YOLO
def predict_image(image_path, model_path, img_size=640):
# 加载模型
model = YOLO(model_path)
# 读取图像
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 进行预测
results = model(image_rgb, size=img_size)
# 处理预测结果
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
scores = result.boxes.conf.cpu().numpy()
labels = result.boxes.cls.cpu().numpy().astype(int)
for box, score, label in zip(boxes, scores, labels):
x1, y1, x2, y2 = map(int, box)
class_name = ['car', 'truck', 'person', 'rider', 'bike', 'bus', 'motor'][label]
color = (0, 255, 0) if label == 0 else (0, 0, 255)
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
cv2.putText(image, f'{class_name} {score:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
# 显示图像
cv2.imshow('Prediction', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == "__main__":
image_path = 'path_to_your_image.jpg'
model_path = 'runs/train/rainy_road/best.pt'
predict_image(image_path, model_path)
7. 运行脚本
-
转换标注格式:
python convert_voc_to_yolo.py
-
训练模型:
python train.py
-
进行预测:
python predict.py
8. 详细解释
转换标注格式脚本 (convert_voc_to_yolo.py
)
-
导入依赖项:
import xml.etree.ElementTree as ET
:导入XML解析库。import os
:导入操作系统接口库。
-
定义转换函数:
convert_voc_to_yolo
:将单个VOC格式的XML文件转换为YOLO格式的TXT文件。convert_all_voc_to_yolo
:将指定目录下的所有VOC格式的XML文件转换为YOLO格式的TXT文件。
-
主函数:
- 设置类别名称和各个子集的路径。
- 调用
convert_all_voc_to_yolo
函数进行转换。
训练脚本 (train.py
)
-
导入依赖项:
from ultralytics import YOLO
:导入YOLOv8模型。
-
定义训练函数:
train_model
:加载模型,设置训练参数,训练模型,并保存最佳模型。
-
主函数:
- 设置数据集路径、模型配置、训练参数等。
- 调用
train_model
函数进行训练。
预测脚本 (predict.py
)
-
导入依赖项:
import cv2
:导入OpenCV库。import torch
:导入PyTorch库。from ultralytics import YOLO
:导入YOLOv8模型。
-
定义预测函数:
predict_image
:加载模型,读取图像,进行预测,处理预测结果,并显示带有标注的图像。
-
主函数:
- 设置图像路径和模型路径。
- 调用
predict_image
函数进行预测。
总结
通过以上步骤,你可以构建一个基于YOLOv8模型的雨天道路目标检测系统。convert_voc_to_yolo.py
用于将VOC格式的标注文件转换为YOLO格式,train.py
用于训练模型,predict.py
用于加载训练好的模型并进行预测