YOLOv11-人脸匿名化
基于YOLOv11与MTCNN的人脸模糊处理
简介
"YOLOv11与MTCNN人脸模糊系统"是一款实时视频流人脸检测与模糊处理解决方案。该系统整合了YOLOv11目标检测模型(用于人体识别)和MTCNN多任务级联卷积网络(用于高精度人脸定位),可实现视频中的人脸自动匿名化处理。本模型适用于需要隐私保护的场景,如监控安防、内容审核和公共视频发布等。
通过结合YOLOv11的快速人体检测能力与MTCNN的精准人脸定位技术,该模型在效率和性能上表现优异,可无缝集成至实际应用场景。
目录
- 模型架构
- 功能特点
- 安装指南
- 使用说明
- 模型推理流程
- 效果展示
- 贡献指南
- 致谢
模型架构
本系统包含三个核心模块:
-
YOLOv11目标检测
- 用于识别视频帧中的"人体"类别
- 快速定位待处理的目标区域(人体区域)
-
MTCNN人脸检测
- 在YOLOv11划定的人体区域内进行二次检测
- 通过面部关键点精确定位人脸区域
-
模糊化处理
- 对MTCNN检测到的人脸区域应用核函数模糊技术(如cv2.blur)
- 确保视频中个体的面部信息不可辨识
模型应用
- YOLOv11:基于COCO/VOC等数据集预训练的检测模型
- MTCNN:通过面部特征点检测实现高效模糊处理
- 后处理:将模糊化后的区域融合至原始视频帧,实现连续处理
功能特点
- 实时人脸模糊:在保持视频完整性的同时实现实时匿名化
- 高效人体检测:YOLOv11在复杂环境中仍保持高速精准识别
- 精准人脸定位:MTCNN可适应多角度人脸及复杂光照条件
- 多平台兼容:支持CPU/GPU运行环境(含CUDA加速)
- 多场景部署:适用于安防监控、隐私保护、内容审核等场景
安装指南
- 安装依赖:
pip install -r requirements.txt
- 进入项目目录:
cd faceanonymization
使用说明
运行主程序:
python main.py
模型推理流程
-
预处理:
- 实时捕获并处理视频帧
- 通过YOLOv11检测人体区域
-
人脸检测:
- 在人体边界框内调用MTCNN进行人脸定位
-
模糊处理:
- 根据blur_ratio参数对检测到的人脸进行核模糊
-
后处理:
- 将模糊化区域融合回原始帧
-
输出展示:
- 实时显示处理效果
- 保存匿名化后的视频文件