小麦 病害检测数据集 nc=12
0: Crown and Root Rot 根冠腐烂
1: Leaf Rust 叶锈病
2: HealthyWheat 健康小麦
3: Wheat Loose Smut 小麦散斑,又名小麦黑穗病
4: Powdery Mildew 小麦白粉病
5: Wheat cyst nematode 小麦孢囊线虫病
6: Wheat scab 小麦赤霉病
7: Wheat Red Spider 小麦红蜘蛛
8: Wheat stalk rot 小麦茎基腐
9: Wheat Take-all 小全蚀病
10: wheat sharp eyespot 小麦纹枯病
11: Wheat Aphids 小麦蚜虫病
共899张(也可以数据增强),8:1:1比例划分,(train:719张,val:90张,test:90张。标注文件为YOLO适用的txt格式。可以直接用于模型训练。
【数据集背景】:
小麦病害检测的研究背景主要关注于提高小麦产量和品质,保障粮食安全。传统的人工巡查耗时费力,且无法实时、精准地监测各类病害。基于目标检测的智能检测系统可以快速识别小麦的多种病害,如根冠腐烂、叶锈病和小麦白粉病等。这种方法不仅提升了检测效率,还能在病害初期采取防治措施,有效降低病害扩散,减少农药使用,促进小麦的健康生长,推动现代农业的发展。
小麦病害检测数据集,并提供基于YOLOv8的训练代码。这个数据集包含899张图像,标注了12类检测目标。标注格式为YOLO格式,可以直接用于深度模型训练。
1. 数据集介绍
数据集目录结构
假设你的数据集已经准备好,并且分为训练集、验证集和测试集。数据集目录结构如下:
wheat_disease_dataset/
├── images/
│ ├── train/
│ ├── val/
│ └── test/
├── labels/
│ ├── train/
│ ├── val/
│ └── test/
└── data.yaml
数据集标注格式
YOLO格式的标注文件是TXT文件,每行表示一个目标,格式如下:
class_id center_x center_y width height
其中:
class_id
是类别的索引(从0开始)。center_x
和center_y
是目标框中心点的归一化坐标。width
和height
是目标框宽度和高度的归一化值。
2. 数据集配置文件 (data.yaml
)
创建一个data.yaml
文件,配置数据集的路径和类别信息:
path: ./wheat_disease_dataset # 数据集路径
train: images/train # 训练集图像路径
val: images/val # 验证集图像路径
test: images/test # 测试集图像路径
nc: 12 # 类别数
names:
- Crown and Root Rot # 根冠腐烂
- Leaf Rust # 叶锈病
- HealthyWheat # 健康小麦
- Wheat Loose Smut # 小麦散斑,又名小麦黑穗病
- Powdery Mildew # 小麦白粉病
- Wheat cyst nematode # 小麦孢囊线虫病
- Wheat scab # 小麦赤霉病
- Wheat Red Spider # 小麦红蜘蛛
- Wheat stalk rot # 小麦茎基腐
- Wheat Take-all # 小全蚀病
- wheat sharp eyespot # 小麦纹枯病
- Wheat Aphids # 小麦蚜虫病
3. 训练脚本 (train.py
)
from ultralytics import YOLO
def train_model(data_yaml_path, model_config, epochs, batch_size, img_size, augment):
# 加载模型
model = YOLO(model_config)
# 训练模型
results = model.train(
data=data_yaml_path,
epochs=epochs,
batch=batch_size,
imgsz=img_size,
augment=augment
)
# 保存模型
model.save("runs/train/wheat_disease/best.pt")
if __name__ == "__main__":
data_yaml_path = 'wheat_disease_dataset/data.yaml'
model_config = 'yolov8n.yaml' # 你可以选择不同的YOLOv8模型配置,如yolov8s.yaml, yolov8m.yaml等
epochs = 100
batch_size = 16
img_size = 640
augment = True
train_model(data_yaml_path, model_config, epochs, batch_size, img_size, augment)
4. 预测脚本 (predict.py
)
import cv2
import torch
from ultralytics import YOLO
def predict_image(image_path, model_path, img_size=640):
# 加载模型
model = YOLO(model_path)
# 读取图像
image = cv2.imread(image_path)
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# 进行预测
results = model(image_rgb, size=img_size)
# 处理预测结果
for result in results:
boxes = result.boxes.xyxy.cpu().numpy()
scores = result.boxes.conf.cpu().numpy()
labels = result.boxes.cls.cpu().numpy().astype(int)
for box, score, label in zip(boxes, scores, labels):
x1, y1, x2, y2 = map(int, box)
class_name = [
'Crown and Root Rot',
'Leaf Rust',
'HealthyWheat',
'Wheat Loose Smut',
'Powdery Mildew',
'Wheat cyst nematode',
'Wheat scab',
'Wheat Red Spider',
'Wheat stalk rot',
'Wheat Take-all',
'wheat sharp eyespot',
'Wheat Aphids'
][label]
color = (0, 255, 0) if label == 2 else (0, 0, 255)
cv2.rectangle(image, (x1, y1), (x2, y2), color, 2)
cv2.putText(image, f'{class_name} {score:.2f}', (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.9, color, 2)
# 显示图像
cv2.imshow('Prediction', image)
cv2.waitKey(0)
cv2.destroyAllWindows()
if __name__ == "__main__":
image_path = 'path_to_your_image.jpg'
model_path = 'runs/train/wheat_disease/best.pt'
predict_image(image_path, model_path)
5. 运行脚本
-
训练模型:
python train.py
-
进行预测:
python predict.py
6. 详细解释
数据集配置文件 (data.yaml
)
path
: 数据集的根目录路径。train
: 训练集图像的路径。val
: 验证集图像的路径。test
: 测试集图像的路径。nc
: 类别数。names
: 类别名称列表。
训练脚本 (train.py
)
-
导入依赖项:
from ultralytics import YOLO
:导入YOLOv8模型。
-
定义训练函数:
train_model
:加载模型,设置训练参数,训练模型,并保存最佳模型。
-
主函数:
- 设置数据集路径、模型配置、训练参数等。
- 调用
train_model
函数进行训练。
预测脚本 (predict.py
)
-
导入依赖项:
import cv2
:导入OpenCV库。import torch
:导入PyTorch库。from ultralytics import YOLO
:导入YOLOv8模型。
-
定义预测函数:
predict_image
:加载模型,读取图像,进行预测,处理预测结果,并显示带有标注的图像。
-
主函数:
- 设置图像路径和模型路径。
- 调用
predict_image
函数进行预测。
7. 注意事项
- 数据集路径:确保数据集路径正确,特别是
data.yaml
文件中的路径。 - 模型配置:可以选择不同的YOLOv8模型配置,如
yolov8s.yaml
,yolov8m.yaml
等,根据你的计算资源和需求选择合适的模型。 - 图像大小:
img_size
可以根据实际需求调整,通常使用640或1280。 - 数据增强:
augment
参数控制是否启用数据增强,可以在训练过程中提高模型的泛化能力。
8. 数据增强
为了增加数据集的多样性,可以使用数据增强技术。YOLOv8在训练过程中默认支持多种数据增强方法,如随机裁剪、翻转、颜色抖动等。如果需要自定义数据增强,可以参考YOLOv8的文档进行配置。
总结
通过以上步骤,你可以构建一个基于YOLOv8模型的小麦病害检测系统。train.py
用于训练模型,predict.py
用于加载训练好的模型并进行预测。希望这些信息对你有帮助!