如何应用风电数据 光伏数据 功率数据进行预测和数据分析。15分钟分辨率。带测风 测光。数据包含2019全年 文章从数据预处理开始,然后进行特征工程、模型选择、模型训练和评估,最后进行预测和结果分析。

在这里插入图片描述
风电数据 光伏数据 功率数据。15分钟分辨率。带测风 测光。数据质量很高。可以用来做预测 数据分析等工作。数据包含2019全年在这里插入图片描述
看起来你有一份包含风电和光伏数据的详细表格,数据包括测风、测光以及实际发电功率,分辨率为15分钟。这是一个非常宝贵的数据集,可以用于多种分析和预测任务。以下是如何应用这个数据集的步骤和建议:

数据探索与预处理

  1. 加载数据

    import pandas as pd
    
    # 假设数据存储在CSV文件中
    data = pd.read_csv('wind_solar_data.csv', parse_dates=['时间'])
    data.head()
    
  2. 数据清洗

    • 检查并处理缺失值。
    • 转换日期时间字段为适当的格式。
    # 检查缺失值
    data.isnull().sum()
    
    # 处理缺失值
    data.fillna(method='ffill', inplace=True)
    
    # 确保时间戳是datetime类型
    data['时间'] = pd.to_datetime(data['时间'])
    
  3. 特征工程

    • 创建新的特征,如日均功率、最大最小功率差值等。
    data['日均功率'] = data.groupby(data['时间'].dt.date)['实际发电功率(mw)'].transform('mean')
    data['功率差值'] = data['实际发电功率(mw)'].diff()
    

数据分析与可视化

  1. 描述性统计

    data.describe()
    
  2. 时间序列可视化

    import matplotlib.pyplot as plt
    
    plt.figure(figsize=(14, 6))
    plt.plot(data['时间'], data['实际发电功率(mw)'], label='实际发电功率')
    plt.title('实际发电功率随时间变化')
    plt.xlabel('时间')
    plt.ylabel('功率 (MW)')
    plt.legend()
    plt.show()
    

预测建模

  1. 选择模型

    • 时序预测模型:ARIMA、SARIMA、Prophet。
    • 机器学习模型:随机森林、梯度提升机(GBM)、支持向量机(SVM)。
    • 深度学习模型:LSTM、GRU。
  2. 数据划分

    from sklearn.model_selection import train_test_split
    
    # 选择特征和目标变量
    features = ['测风塔10m风速(m/s)', '测风塔30m风速(m/s)', '测风塔50m风速(m/s)', '测风塔10m风向(°)', '测风塔30m风向(°)', '测风塔50m风向(°)', '温度(°C)', '气压(hPa)', '测光']
    target = '实际发电功率(mw)'
    
    X = data[features]
    y = data[target]
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
    
  3. 模型训练与评估

    • 使用随机森林进行预测。
    from sklearn.ensemble import RandomForestRegressor
    from sklearn.metrics import mean_squared_error
    
    model = RandomForestRegressor(n_estimators=100, random_state=42)
    model.fit(X_train, y_train)
    
    y_pred = model.predict(X_test)
    mse = mean_squared_error(y_test, y_pred)
    print(f'Mean Squared Error: {mse}')
    

异常检测

  1. 选择算法

    • Isolation Forest、One-Class SVM。
  2. 异常检测

    from sklearn.ensemble import IsolationForest
    
    iso_forest = IsolationForest(contamination=0.05)
    data['anomaly'] = iso_forest.fit_predict(data[features])
    
    plt.figure(figsize=(14, 6))
    plt.scatter(data['时间'], data['实际发电功率(mw)'], c=data['anomaly'], cmap='viridis')
    plt.title('异常检测')
    plt.xlabel('时间')
    plt.ylabel('功率 (MW)')
    plt.show()
    

实际应用案例

  1. 电力系统调度优化

    • 利用预测结果优化电网调度,减少弃风弃光现象,提高能源利用率。
  2. 设备维护计划

    • 通过聚类分析和异常检测,提前预警潜在问题,制定合理的维护计划,降低维修成本。
  3. 政策制定支持

    • 提供数据支持给政策制定者,辅助他们更好地理解和应对新能源发展的挑战与机遇。

注意事项

  • 季节性和趋势:考虑到风电和光伏发电受天气条件影响较大,因此在建模时要特别注意数据中的季节性变化和长期趋势。
  • 外部变量:引入气象预报数据作为额外的输入特征,可以显著提升预测精度。
  • 模型更新:随着新数据的到来,定期重新训练模型以适应最新的市场和技术环境。

好的,让我们一步步详细地探讨如何使用这些数据进行预测和数据分析。我们将从数据预处理开始,然后进行特征工程、模型选择、模型训练和评估,最后进行预测和结果分析。

1. 数据加载与预处理

加载数据

首先,我们需要加载数据并进行初步的预处理。

import pandas as pd

# 假设数据存储在CSV文件中
data = pd.read_csv('wind_solar_data.csv', parse_dates=['时间'])

# 查看数据前几行以了解其结构
print(data.head())
数据清洗

处理缺失值、异常值,并转换日期时间字段为适当的格式。

# 检查缺失值
print(data.isnull().sum())

# 处理缺失值
data.fillna(method='ffill', inplace=True)

# 确保时间戳是datetime类型
data['时间'] = pd.to_datetime(data['时间'])
特征工程

创建新的特征,如日均功率、最大最小功率差值等。

# 创建新特征:日均功率输出
data['日均功率'] = data.groupby(data['时间'].dt.date)['实际发电功率(mw)'].transform('mean')

# 创建新特征:功率差值
data['功率差值'] = data['实际发电功率(mw)'].diff()

# 创建新特征:风速平均值
data['风速平均值'] = data[['测风塔10m风速(m/s)', '测风塔30m风速(m/s)', '测风塔50m风速(m/s)']].mean(axis=1)

2. 数据分析与可视化

描述性统计

查看数据的基本统计信息。

print(data.describe())
时间序列可视化

绘制时间序列图,观察发电功率的变化趋势。

import matplotlib.pyplot as plt

plt.figure(figsize=(14, 6))
plt.plot(data['时间'], data['实际发电功率(mw)'], label='实际发电功率')
plt.title('实际发电功率随时间变化')
plt.xlabel('时间')
plt.ylabel('功率 (MW)')
plt.legend()
plt.show()

3. 预测建模

数据划分

将数据划分为训练集和测试集。

from sklearn.model_selection import train_test_split

# 选择特征和目标变量
features = ['测风塔10m风速(m/s)', '测风塔30m风速(m/s)', '测风塔50m风速(m/s)', '测风塔10m风向(°)', '测风塔30m风向(°)', '测风塔50m风向(°)', '温度(°C)', '气压(hPa)', '测光']
target = '实际发电功率(mw)'

X = data[features]
y = data[target]

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, shuffle=False)
特征缩放

对数值型特征进行标准化或归一化。

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_test_scaled = scaler.transform(X_test)
选择模型

选择合适的预测模型,这里我们选择随机森林和Prophet作为示例。

from sklearn.ensemble import RandomForestRegressor
from fbprophet import Prophet

# 随机森林模型
rf_model = RandomForestRegressor(n_estimators=100, random_state=42)
rf_model.fit(X_train_scaled, y_train)

# Prophet模型
prophet_model = Prophet()
prophet_model.fit(pd.DataFrame({'ds': data['时间'], 'y': data['实际发电功率(mw)']}))
模型评估

评估模型的性能。

from sklearn.metrics import mean_squared_error, mean_absolute_error

# 随机森林模型预测
y_pred_rf = rf_model.predict(X_test_scaled)
mse_rf = mean_squared_error(y_test, y_pred_rf)
mae_rf = mean_absolute_error(y_test, y_pred_rf)
print(f'Random Forest MSE: {mse_rf}, MAE: {mae_rf}')

# Prophet模型预测
future = prophet_model.make_future_dataframe(periods=len(X_test), freq='15T')
forecast = prophet_model.predict(future)
y_pred_prophet = forecast['yhat'].values[-len(y_test):]
mse_prophet = mean_squared_error(y_test, y_pred_prophet)
mae_prophet = mean_absolute_error(y_test, y_pred_prophet)
print(f'Prophet MSE: {mse_prophet}, MAE: {mae_prophet}')

4. 结果分析与可视化

预测结果可视化

绘制预测结果与实际值的对比图。

plt.figure(figsize=(14, 6))
plt.plot(data['时间'][-len(y_test):], y_test, label='实际发电功率')
plt.plot(data['时间'][-len(y_test):], y_pred_rf, label='随机森林预测')
plt.plot(data['时间'][-len(y_test):], y_pred_prophet, label='Prophet预测')
plt.title('预测结果与实际值对比')
plt.xlabel('时间')
plt.ylabel('功率 (MW)')
plt.legend()
plt.show()

5. 异常检测

异常检测

使用Isolation Forest进行异常检测。

from sklearn.ensemble import IsolationForest

iso_forest = IsolationForest(contamination=0.05)
data['anomaly'] = iso_forest.fit_predict(data[features])

plt.figure(figsize=(14, 6))
plt.scatter(data['时间'], data['实际发电功率(mw)'], c=data['anomaly'], cmap='viridis')
plt.title('异常检测')
plt.xlabel('时间')
plt.ylabel('功率 (MW)')
plt.show()

6. 实际应用案例

电力系统调度优化

利用预测结果优化电网调度,减少弃风弃光现象,提高能源利用率。

设备维护计划

通过聚类分析和异常检测,提前预警潜在问题,制定合理的维护计划,降低维修成本。

Python 短期风电功率数据集是指使用Python编程语言处理分析的一组短期风电功率数据。短期风电功率数据集可以包含从数小时到数天的风电功率数据,通常以每小时为单位记录。这些数据通常包含风速向、发电机输出功率等信息。 使用Python编程语言可以对这些短期风电功率数据进行处理、分析可视化。Python具有丰富的数据处理分析库,如NumPy、PandasMatplotlib,可以轻松地加载处理大量数据,并进行统计分析数据可视化。 对于短期风电功率数据集,可以使用Python编程语言进行以下操作: 1. 数据加载清洗:使用Python的Pandas库可以读取处理各种数据格式,如CSV、Excel等。可以加载所有的风电功率数据,并进行数据清洗,如去除重复数据、处理缺失值等。 2. 数据分析:使用Python的NumPyPandas库可以进行各种统计分析操作,如计算平均值、标准差、最大最小值等。可以对风电功率数据进行统计描述,并生成各种统计图表。 3. 时间序列分析:使用Python的Pandas库可以对时间序列数据进行分析,如计算滚动平均、移动窗口操作等。可以对风电功率数据进行时间序列分析,找出周期性趋势性。 4. 数据可视化:使用Python的Matplotlib库可以生成各种数据可视化图表,如折线图、柱状图、散点图等。可以将风电功率数据可视化,以便更直观地展示数据特征变化趋势。 总结来说,Python短期风电功率数据集是基于Python编程语言处理分析的一组短期风电功率数据。使用Python可以对这些数据进行加载、清洗、分析可视化,从而帮助我们更好地了解利用风电能源。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值