yolov5/yolov8/yolo11交通道路障碍物检测

BDD100K-YOLO 智能交通目标检测系统

项目概述

本项目是基于YOLOv8模型和BDD100K数据集开发的交通场景目标检测系统,能够对道路环境中的各类物体进行精准识别与分类。作为计算机视觉在智能交通领域的重要应用,该系统可为自动驾驶、交通监控等场景提供关键技术支撑。

核心功能模块

在这里插入图片描述

1. 模型训练模块 (YOLO.ipynb)

  • 实现YOLOv8模型的全流程训练
  • 支持多GPU分布式训练加速
  • 集成学习率自动调整策略
  • 包含数据增强管道配置
    在这里插入图片描述

2. 环境清理模块 (reset.ipynb)

  • 自动化清理训练生成的临时文件
  • 特别设计用于删除"runs"训练记录文件夹
  • 支持训练前的环境初始化

3. 图像检测模块 (controller.ipynb)

  • 提供用户友好的检测接口
  • 支持单张图片/视频流输入
  • 可视化检测结果输出
  • 可扩展的检测结果后处理
    在这里插入图片描述

技术实现细节

训练配置

  • 训练轮次:基础训练10轮次(验证50轮次无过拟合)
  • 数据集:BDD100K大型交通数据集
  • 硬件要求:建议配备NVIDIA GPU加速

数据类别及详细

nc: 13
names: [
    "traffic light",
    "traffic sign",
    "car",
    "bus",
    "person",
    "bike",
    "motor",
    "rider",
    "train",
    "truck",
    "drivable area",
    "lane",
    "line"
]

数据集说明

BDD100K数据集包含:

  • 10万张标注图像
  • 覆盖多种天气条件
  • 包含昼夜不同时段
  • 100+类交通相关物体

使用指南

环境准备

  1. 安装依赖库:
pip install ultralytics torchvision opencv-python

### 快速开始
1. 配置检测参数:
```python
# 在controller.ipynb中修改
image_path = "your_image.jpg"  # 替换为本地路径
model_path = "bdd100k_yolov8.pt"
  1. 执行检测:
!python detect.py --weights {model_path} --source {image_path}

注意事项

  1. 路径配置:务必修改文件中的本地路径指向
  2. 硬件适配:根据GPU显存调整batch size
  3. 扩展训练:建议在10轮次基础上继续微调
  4. 问题反馈:遇到技术问题请联系项目维护者
    在这里插入图片描述

性能优化建议

  • 使用混合精度训练加速
  • 尝试不同的数据增强组合
  • 调整anchor boxes尺寸
  • 实施知识蒸馏压缩模型

应用场景

  1. 自动驾驶环境感知
  2. 交通流量统计分析
  3. 道路异常事件检测
  4. 智能交通管理系统

后续开发计划

  • 增加ONNX/TensorRT导出支持
  • 开发实时视频流处理接口
  • 集成更多交通专用检测类别
  • 优化模型在边缘设备的部署
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值