YOLOv5目标追踪系统详解
1. 项目概述
YOLOv5目标追踪系统是一个基于YOLOv5(You Only Look Once)深度学习模型的目标检测与追踪框架,结合SORT(Simple Online and Realtime Tracking)算法实现高效的多目标追踪(MOT)。该系统不仅支持传统的目标检测,还新增了目标模糊处理、Streamlit可视化仪表盘、多输入源支持等功能,适用于安防监控、交通管理、智能零售等多种tracking应用场景。
2. 核心功能
(1)YOLOv5目标检测与追踪
- YOLOv5 是目前最先进的目标检测模型之一,具有高精度、高速度的特点,适用于实时检测任务。
- SORT(Simple Online and Realtime Tracking) 是一种轻量级的多目标追踪算法,通过**卡尔曼滤波(Kalman Filter)和匈牙利算法(Hungarian Algorithm)**实现目标关联,确保追踪的稳定性和实时性。
(2)新增目标模糊处理(Blurring Option)
- 适用于隐私保护场景,如人脸模糊、车牌遮挡等。
- 可通过
--blur-obj
参数启用,对检测到的目标进行高斯模糊处理。
(3)Streamlit可视化仪表盘
- 提供交互式Web界面,支持实时视频分析、参数调整和结果可视化。
- 适用于非技术用户,无需命令行操作即可运行目标检测与追踪。
(4)多输入源支持
- 视频文件(MP4、AVI等)
- 网络摄像头(WebCam)
- 外接摄像头(USB Camera)
- IP摄像头(RTSP/HTTP流)
(5)CPU/GPU双模式支持
- 默认使用CPU运行,适用于低配置设备。
- 若设备支持CUDA,可自动切换至GPU加速,提升检测速度。
3. 环境配置与安装
(1)Python环境要求
- 推荐版本:Python 3.9(兼容3.7/3.8,部分功能可能受限)
(2)创建虚拟环境(推荐)
为避免Python包冲突,建议使用虚拟环境:
Linux/macOS用户
python3 -m venv yolov5objtracking
source yolov5objtracking/bin/activate
Windows用户
python3 -m venv yolov5objtracking
cd yolov5objtracking
cd Scripts
activate
cd ..
cd ..
(3)安装依赖库
pip install --upgrade pip
pip install -r requirements.txt
4. 运行方式
(1)基础目标检测
python ob_detect.py --weights yolov5s.pt --source "video.mp4"
(2)特定类别检测(如行人)
python ob_detect.py --weights yolov5s.pt --source "video.mp4" --classes 0
(3)目标检测+追踪
python obj_det_and_trk.py --weights yolov5s.pt --source "video.mp4"
(4)目标检测+追踪+模糊处理
python obj_det_and_trk.py --weights yolov5s.pt --source "video.mp4" --blur-obj
(5)多色边界框(不同目标不同颜色)
python obj_det_and_trk.py --weights yolov5s.pt --source "video.mp4" --color-box
(6)Streamlit可视化运行
python -m streamlit run app.py
5. 输出结果
所有检测结果默认保存在:
/runs/detect/exp/
- 输出视频文件名与输入文件相同
- 支持JSON/CSV格式的检测数据导出
6. 应用场景
- 智能安防:实时监控、可疑目标追踪
- 交通管理:车辆计数、违规检测
- 零售分析:顾客行为分析、人流统计
- 隐私保护:自动模糊人脸、车牌等敏感信息
7. 性能优化建议
- GPU加速:使用
--device 0
参数指定GPU运行 - 调整分辨率:通过
--imgsz 640
设置输入尺寸(降低分辨率可提升速度) - 多线程处理:适用于IP摄像头流媒体分析
8. 总结
YOLOv5目标追踪系统整合了目标检测、多目标追踪、隐私保护、可视化分析等功能,适用于各类实时视频分析任务。其轻量级设计使其可在普通计算机上运行,同时支持GPU加速以满足高性能需求。未来可扩展DeepSORT算法以提升追踪精度,或集成TensorRT优化推理速度。