使用spark进行淘宝用户行为分析

该博客介绍了如何使用Spark对淘宝用户行为进行分析,包括数据过滤、分组聚合、统计结果并保存到文件。主要关注用户的购买、加入购物车和收藏商品行为,通过DataFrame操作获取行为数量和比例,结果存储为JSON文件。
摘要由CSDN通过智能技术生成

前言

   淘宝电商行业经过十几年的快速发展,吸引并获得了大量的用户。移动互联网时代,用户的需求决定了电商行业未来的发展方向。
   在这样的背景下,获取用户行为并进行分析,理解用户需求,从而指导产品营销和设计,对于电商的未来发展具有重要意义。

摘要

   本数据报告以淘宝app平台为数据集,通过行业的指标对淘宝用户行为进行分析,从而探索淘宝用户的行为模式。

注:因为是小组分工合作,我负责用户行为信息统计,所以只有一部分代码内容

一、项目步骤

1、过程简图:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值