spark.default.parallelism 在什么时候起作用,与spark.sql.shuffle.partitions有什么异同点?

spark.default.parallelismspark.sql.shuffle.partitions 是 Spark 中两个控制并行度的配置参数,但它们作用的场景和用途不同:

spark.default.parallelism

  • 用途spark.default.parallelism 用于控制 RDD 中的默认分区数。
  • 适用场景:在使用 SparkContext.parallelize 或者执行非 Shuffle 类操作(例如 mapfilter)创建 RDD 时,如果未显式指定分区数,那么 Spark 会用 spark.default.parallelism 的值作为分区数量。
  • 默认值:通常,spark.default.parallelism 会根据集群中的 CPU 核心数来决定,通常是 SparkContext.defaultParallelism 的 2 倍,即每个核对应 2 个分区。
  • 作用时间:主要影响非 Spark SQL 操作的 RDD,并在无指定分区数时起作用。

spark.sql.shuffle.partitions

  • 用途spark.sql.shuffle.partitions 用于控制 Spark SQL 查询中 Shuffle 阶段的分区数。
  • 适用场景:在执行 Spark SQL 或 DataFrame API 操作时(如 groupByjoinorderBy 等涉及 Shuffle 的操作),Spark 会依据 spark.sql.shuffle.partitions 的值来决定 Shuffle 阶段的分区数量。
  • 默认值:该参数的默认值是 200,但可以根据数据规模、集群资源等进行调整,以优化性能。
  • 作用时间:此参数仅影响 Spark SQL 的 Shuffle 操作,与 RDD 操作无关。

异同点总结

  • 异同
    • spark.default.parallelism 主要影响 RDD 的初始并行度,而 spark.sql.shuffle.partitions 则专门控制 Spark SQL 中的 Shuffle 分区数。
    • 前者在非 SQL 的 RDD 操作中起作用,后者则仅对 SQL 或 DataFrame API 中的 Shuffle 操作生效。
  • 配置建议
    • 如果以 RDD 为主,则可以根据集群大小和任务负载调整 spark.default.parallelism
    • 如果以 SQL 和 DataFrame 操作为主,特别是需要进行大量 Shuffle 的场景,可以适当调整 spark.sql.shuffle.partitions 来优化性能(如减少分区数以降低小任务开销,或增加分区数以加快数据处理速度)。
### 设置 Spark 默认并行度为 400 的方法 在 Spark 中,可以通过多种方式设置默认的并行度(`default parallelism`)。以下是几种常见的配置方法: #### 方法一:通过 `spark.default.parallelism` 参数 可以在 Spark 配置文件或启动应用程序时指定该参数来设置全局默认并行度。具体操作如下: - 如果使用的是 Spark Shell 或其他交互环境,在启动命令中加入以下选项即可完成配置: ```bash --conf spark.default.parallelism=400 ``` - 对于集群模式下的作业提交,也可以通过 `--conf` 参数传递给 `spark-submit` 工具[^1]。 #### 方法二:修改 Spark 配置文件 对于长期运行的任务或者固定部署场景,可以编辑 Spark 的配置文件 `spark-defaults.conf` 并添加以下内容: ```properties spark.default.parallelism 400 ``` 保存更改后重启 Spark 应用程序以使新配置生效[^3]。 #### 方法三:动态调整 Shuffle 分区数量 除了上述静态设定外,还可以针对特定任务灵活控制其分区数目。例如当执行 SQL 查询语句前可临时改变 shuffle partitions 数量至目标值 (此处设为400),即执行下面这条指令之前的所有后续shuffle操作都将采用新的定义好的partition count: ```sql SET spark.sql.shuffle.partitions=400; ``` ### 处理优化性能问题 即使设置了较高的初始并行级别也可能遇到某些特殊情况比如数据分布不均等问题影响整体效率表现。此时就需要借助更高级别的特性来进行进一步微调: #### 开启自适应查询执行(AQE) 启用 AQE 功能可以帮助系统自动识别潜在的数据倾斜状况并对之采取相应措施而无需人工干预过多细节部分。主要涉及以下几个关键参数调节: - **开启AQE**: 将 `spark.sql.adaptive.enabled=true` 添加到您的应用配置当中去激活整个机制。 - **处理倾斜连接** : 启用 skew join 自动检测和缓解策略,确保相关联表间存在显著差异大小关系时候能够有效应对可能出现的大规模重复计算现象. * 设定阈值判断标准:`spark.sql.adaptive.skewJoin.skewedPartitionFactor`=X(推荐保持原厂预设5不变除非特殊需求); * 明确触发条件界限: `spark.sql.adaptive.skewJoin.skewedPartitionThresholdInBytes`=Y字节单位表示达到多少容量以上才被认定属于严重失衡范畴值得特别对待. 这些做法共同作用之下往往能带来较为明显的提速效果同时减少资源浪费情况发生概率[^4]. ### 示例代码片段展示如何初始化带有定制化属性的对象实例 ```scala import org.apache.spark.SparkConf import org.apache.spark.sql.SparkSession val conf = new SparkConf() .setAppName("CustomParallelismApp") .setMaster("local[*]") .set("spark.default.parallelism", "400") val spark = SparkSession.builder.config(conf).getOrCreate() // 执行业务逻辑... println(s"Current default parallelism is set to ${spark.conf.get("spark.default.parallelism")}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值