学习笔记:裴蜀定理

裴蜀定理

定义

裴蜀定理,又称贝祖定理(Bézout's lemma)。是一个关于最大公约数的定理。

其内容是:

\(a,b\) 是不全为零的整数,则存在整数 \(x,y\), 使得 \(ax+by=\gcd(a,b)\).

证明

  1. 若任何一个等于 \(0\), 则 \(\gcd(a,b)=a\). 这时定理显然成立。

  2. \(a,b\) 不等于 \(0\).

    由于 \(\gcd(a,b)=\gcd(a,-b)\),

    不妨设 \(a,b\) 都大于 \(0\)\(a\geq b,\gcd(a,b)=d\).

    \(ax+by=d\), 两边同时除以 \(d\), 可得 \(a_1x+b_1y=1\), 其中 \((a_1,b_1)=1\).

    转证 \(a_1x+b_1y=1\).

    我们先回顾一下辗转相除法是怎么做的,由 \(\gcd(a, b) \rightarrow \gcd(b,a\mod b) \rightarrow \dots\) 我们把模出来的数据叫做 \(r\) 于是,有

    \[\gcd(a_1,b_1)=\gcd(b_1,r_1)=\gcd(r_1,r_2)=\cdots=(r_{n-1},r_n)=1 \]

    把辗转相除法中的运算展开,做成带余数的除法,得

    \[\begin{aligned}a_1 &= q_1b_1+r_1 &(0\leq r_1<b_1) \\ b_1 &= q_2r_1+r_2 &(0\leq r_2<r_1) \\ r_1 &= q_3r_2+r_3 &(0\leq r_3<r_2) \\ &\cdots \\ r_{n-3} &= q_{n-1}r_{n-2}+r_{n-1} \\ r_{n-2} &= q_nr_{n-1}+r_n \\ r_{n-1} &= q_{n+1}r_n\end{aligned} \]

    不妨令辗转相除法在除到互质的时候退出则 \(r_n=1\) 所以有(\(q\) 被换成了 \(x\),为了符合最终形式)

    \[r_{n-2}=x_nr_{n-1}+1 \]

    \[1=r_{n-2}-x_nr_{n-1} \]

    由倒数第三个式子 \(r_{n-1}=r_{n-3}-x_{n-1}r_{n-2}\) 代入上式,得

    \[1=(1+x_nx_{n-1})r_{n-2}-x_nr_{n-3} \]

    然后用同样的办法用它上面的等式逐个地消去 \(r_{n-2},\cdots,r_1\),

    可证得 \(1=a_1x+b_1y\).
    这样等于是一般式中 \(d=1\) 的情况。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值