文章目录
- 状态密度
- 状(能)态密度的定义
- 状(能)态密度汇总
- 费米能级和载流子的统计分布
- 费米分布函数
- 导带电子和价带空穴浓度
- 本征半导体中的载流子统计
- 本征载流子浓度
- 本征半导体的费米能级位置
- 杂质半导体中的载流子统计
- 非补偿情形(单一杂质)
- 补偿情形
- 简并半导体
- 简并的出现
- 简并半导体的载流子浓度
- 简并化条件
- 简并时杂质的电离
状态密度
状(能)态密度的定义
状态密度:单位能量间隔内的状态数目。能量变化导致k状态变化,然后导致k空间体积的变化(即等能面的扩张或收缩),进而导致状态数的变化。
特点:
- 状态密度与能量呈抛物线关系。
- 有效质量越大,状态密度也就越大。
- 仅适用于能带极值附近。
对于实际的半导体来说,硅的导带有六个相同的椭球型等能面,锗有四个(八个半椭球),因此要给状态密度乘相应的倍数,因此定义了电子状态密度有效质量。
而对于空穴,要考虑硅和锗的价带,极值点在k=0,分为轻空穴和重空穴两支能带,总状态密度是轻重两支能带状态密度之和,定义出了空穴状态密度有效质量。
状(能)态密度汇总
费米能级和载流子的统计分布
费米分布函数
费米分布函数是表示能量为E的一个量子态被电子占据的几率,对所有这样的量子态求和,一定会得到总的电子数目。其中费米能级随着温度而发生变化。
当能量和费米能级差值很大,费米分布函数就退化为玻尔兹曼分布(实际上是电子较少的时候忽略泡利不相容原理的结果),就是图中绿色的线。
因为一个位置如果没有被电子占据,那么它就被空穴占据,所以空穴的费米分布函数和电子费米分布函数相加等于1。
导带电子和价带空穴浓度
导带电子浓度的求解,就是用电子状态密度(有多少可允许的量子态),乘以费米分布函数(每个量子态的电子数量的期望),对整个导带积分。假设导带底远高于费米能级,那么费米分布函数变为玻尔兹曼分布,由于玻尔兹曼分布以指数形式减少,所以实际上积分中占主要部分的是接近导带底的部分,所以将电子状态密度适用于整个导带,积分上限改为无穷。
数学处理后,得到平衡态的导带电子浓度,引入导带有效状态密度,它和温度有关。
同理,得到价带平衡空穴浓度和价带空穴有效状态密度,它和温度有关。
载流子浓度乘积有重要性质,只和材料参数和温度有关,和费米能级、掺杂浓度无关:
本征半导体中的载流子统计
本征载流子浓度
根据n=p=ni,得出np=ni^2,这是电中性条件,开根得到本征载流子浓度,本征载流子浓度只和温度有关。
本征载流子浓度和温度的对数关系:
禁带越宽,极限工作温度越大。
本征半导体的费米能级位置
利用n=p求出费米能级,基本上在禁带中线处。
杂质半导体中的载流子统计
非补偿情形(单一杂质)
杂质能级的分布函数(这里受主能级的基态简并度是4):
术语定义:施主能级上的电子浓度就是未电离的施主浓度,电离施主浓度就是用总掺杂浓度减去未电离的施主浓度,也等于向导带激发的电子的浓度。受主能级和空穴浓度同理,空穴电离实际上就是空穴离开受主能级,价带电子占据受主能级。
单一杂质的电中性条件:
对n型半导体中载流子浓度进行讨论,分为几个区域:
低温弱电离区:
中等电离区和强电离区:
过渡区(强电离区->本征激发):
本征激发区:
n型半导体的费米能级随温度变化:
n型半导体的电子浓度随温度变化:
强电离不同掺杂水平的费米能级:
补偿情形
电中性条件:
低温弱电离区:由于施主杂质较多,费米能级钉扎在施主能级附近,远在受主能级之上,受主能级完全被电子填充,
对数坐标图上的斜率有差别,临界点是电子浓度等于受主浓度。
强电离区:
过渡区:
本征激发区:
简并半导体
简并的出现
当掺杂浓度大于导带有效状态密度时,费米能级高于导带底,玻尔兹曼分布不适用,要考虑泡利不相容原理。
简并半导体的载流子浓度
电子浓度和空穴浓度求出:
简并化条件
简并化条件:
简并掺杂浓度:
简并时杂质的电离
简并时杂质不能充分电离。一般非简并时,费米能级在施主能级之下,施主容易电离;而简并时,费米能级超过导带底,施主不容易电离。