文章目录
载流子的漂移运动
电导的微观理论
电导的宏观理论是欧姆定律,据此可以推导出微观形式的欧姆定律,其中电导率受到载流子浓度和载流子迁移率的影响。
半导体的电导率和迁移率
据此可以推导出载流子平均漂移速度和载流子迁移率、电场强度的关系,对空穴和电子有不同的迁移率,可以得到空穴电流密度和电子电流密度。
载流子的散射
载流子散射的概念
不满带的电子能够导电,因为电子的速度之和不为零。
散射几率、平均自由时间和迁移率的关系
散射几率:单位时间受到散射的次数。
平均自由时间(弛豫时间):平均每次散射之间的时长。
平均漂移速度:假设两次散射之间是匀加速运动,求在散射前的速度。
可以求出平均漂移速度和弛豫时间的关系,对于各向异性的半导体来说,就是对不同的导带加权求平均值,可以得到电子电导有效质量。
载流子散射的主要机制
散射的原因:周期势场被破坏(晶体偏离理想),产生了微扰势。
- 电离杂质中心散射(库仑力的作用、弹性散射)。温度越高,散射几率越小;掺杂浓度越大,散射几率越大。
- 晶格振动散射(声子散射)。晶格振动类似于谐振子,可以产生格波(晶格振动波)。格波分为光学波和声学波,都是两横一纵,光学波的能量较高。
声子是一种准粒子,既有能量又有动量,声子散射遵循动量和能量守恒。
具有单能谷的半导体,对电子起散射作用的主要是长波,即q=0附近的波,靠近中间的是纵波,两边是横波。 ω \omega ω较小时是弹性散射,较大时是非弹性散射。
可以得出光学波和声学波散射几率。一般情况下(非热载流子,速度不饱和)考虑声学波散射,温度越高,声学波散射几率越大。
此外,还有一些其他的散射机制:等价能谷间散射(非弹性散射);中性杂质散射(重掺杂、低温);缺陷散射。
迁移率与杂质浓度和温度的关系
迁移率与杂质浓度和温度的关系
几种散射机构同时存在时,散射几率是线性相加的。据此,主要考虑电离杂质散射和声学波散射,得到迁移率和杂质浓度和温度的关系。式中A项是声学波散射,B项是电离杂质散射。
电阻率与杂质浓度的关系
电阻率随杂质浓度增大单调下降。在轻掺杂情形下,迁移率弱依赖于掺杂浓度,电子浓度与掺杂浓度成正比,因此在对数坐标图上是一条直线;重掺杂情况下,迁移率减小,且不完全电离,电阻率比直线要大。
电阻率与温度的关系
对于本征半导体,主要由本征载流子浓度决定,电阻率单调下降。
对于杂质半导体,载流子可以通过杂质电离和本征激发来获得,迁移率通过电离杂质散射和晶格散射影响。
AB段:温度较小,温度增大时,杂质电离增大,本征激发忽略(载流子数量增大),电离杂质散射减小,晶格振动散射忽略(迁移率增大)。
BC段:温度中等,电离杂质完全电离,本征激发次要(载流子数量不变),电离杂质散射次要,晶格振动散射增大(迁移率减小)。
CD段:温度高,电离杂质电离次要,本征激发增大(载流子数量增大),电离杂质散射次要,晶格振动散射次要(迁移率不变)。
强电场下的输运
欧姆定律的偏移和热载流子
低场下线性、中场下1/2次方、强场下饱和。
弛豫时间和电子速度有关,低场下热运动平均速度远大于漂移速度,主要由热运动平均速度决定;随着漂移速度增加,弛豫时间减少,迁移率下降。
强场下发射光学声子,速度可以饱和。
强场下热载流子的能量很高,可以光学声子散射,也可以发生能谷间散射。