视频去模糊Coding-Prior Guided Diffusion Network for Video Deblurring

论文作者:Yike Liu,Jianhui Zhang,Haipeng Li,Shuaicheng Liu,Bing Zeng

作者单位:

论文链接:http://arxiv.org/abs/2504.12222v1

内容简介:

1)方向:视频去模糊

2)应用:视频去模糊

3)背景:尽管当前的视频去模糊方法取得了显著进展,但它们通常忽略了两个重要的先验信息来源:(1)视频编解码中生成的运动矢量(MVs)与残差信息(CRs),可作为高效的帧间对齐与纹理线索;(2)预训练扩散生成模型中蕴含的丰富现实世界知识,这些潜力尚未被充分利用。

4)方法:本文提出一种新的两阶段框架 CPGDNet,结合了编码先验与生成式先验以实现高质量的视频去模糊。第一阶段是 编码先验特征传播模块(CPFP),利用运动矢量进行帧对齐,使用编码残差生成注意力掩码,解决运动误差和纹理变化问题。第二阶段是 编码先验控制生成模块(CPC),将编码先验引入预训练的扩散模型中,引导其增强关键区域并合成真实细节,从而提升去模糊效果。

5)结果:实验结果显示,CPGDNet 在感知质量方面实现了业界领先的表现,在图像质量评价指标(IQA)上最多提升了30%。此外,作者将开放源码及包含编码先验增强的数据集,为后续研究提供资源支持。

内容概要:该论文聚焦于6G通信中20-100GHz频段的电磁场(EMF)暴露评估问题,提出了一种基于自适应可重构架构神经网络(RAWA-NN)的预测框架。该框架通过集成权重分析模块和优化模块,能够自动优化网络超参数,显著减少训练时间。模型使用70%的前臂数据进行训练,其余数据用于测试,并用腹部和股四头肌数据验证模型泛化能力。结果显示,该模型在不同参数下的相对差异(RD)在前臂低于2.6%,其他身体部位低于9.5%,可有效预测皮肤表面的温升和吸收功率密度(APD)。此外,论文还提供了详细的代码实现,涵盖数据预处理、权重分析模块、自适应优化模块、RAWA-NN模型构建及训练评估等内容。 适合人群:从事电磁兼容性研究、6G通信技术研发以及对神经网络优化感兴趣的科研人员和工程师。 使用场景及目标:①研究6G通信中高频段电磁暴露对人体的影响;②开发更高效的电磁暴露评估工具;③优化神经网络架构以提高模型训练效率和预测精度。 其他说明:论文不仅提出了理论框架,还提供了完整的代码实现,方便读者复现实验结果。此外,论文还讨论了未来的研究方向,包括扩展到更高频段(如300GHz)的数据处理、引入强化学习优化超参数、以及实现多物理场耦合的智能电磁暴露评估系统。建议读者在实际应用中根据具体需求调整模型架构和参数,并结合真实数据进行验证。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Qing_er爱吃山竹

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值